
 

Abstract—The advent of renewable energy induces new 

problematic electrical network configurations. Indeed, the 

renewable energy characteristics (intermittency, production 

uncertainty) combined with their inherent spatial distribution 

implies to aggregate them and to design specific control tools to 

connect them to the grid and allow them to participate to the 

market. Based on an industrial case study, we propose in this 

work to gather and coordinate numerous independent 

producers through a Cooperative Virtual Power Plant (CVPP). 

To perform an efficient market participation of such coalition 

of producers, we model its behavior as a Markov Decision 

Process. Our model takes into account renewable generation 

prior uncertainty, market constraints and optimizes 

sequentially the utilization of available resources. Experiments 

realized using realistic datasets show the efficacy of the 

proposed model and speak in favor of renewable and 

controllable producers’ coalition in CVPP. 

 
Index Terms—Cooperative virtual power plant, partially 

observable markov decision processes, renewable market 

participation, storage management.  

 

I. INTRODUCTION 

European countries adopted in 2008 the climate-energy 

package [1], setting as objectives to reach by 2020 a 20% 

decrease of greenhouse gas emissions, a 20% share of 

renewable energy in the total energy consumption, a 20% 

improvement of the energy efficiency. To achieve these 

objectives, European renewable installed capacities has 

known a remarkable expansion (Fig. 1). Yet the difficult 

integration of Renewable Energy Sources (RES) into the 

electrical grid (termed the Grid, hereafter) challenges the 

2020’s goals.  

This difficulty is essentially due to renewable generation 

characteristics, which are hardly compatible with the current 

electrical system [2]. Indeed, renewable primary sources 

(wind, sun, etc.) are variable and intermittent, thus their 

behavior is difficult to forecast accurately. As electrical 

networks impose pull off and put in equilibrium, requiring a 

good knowledge of both demand and offer before operation, 

these characteristics strongly limit the integration of 

renewable generation in the Grid, as is.  

One of the principal methods used to ensure the Grid 

equilibrium is to match offer and demands announcements on 

electricity exchange markets. They force participants to 

respect their production engagements or being subject to 

substantial penalties. A producer unable to ensure the 
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equality of generation announcements and realization thus 

jeopardizes: 

 The stability of the physical network, 

 Its competitiveness in the electricity market. 

 

 
Fig. 1. European annual and cumulative offshore wind capacity installed – 

EWEA 2013 [3]. 

 

The case of off-shore wind power is representative of the 

challenges of RES. Indeed, their advantages (stronger and 

steadier generation profile, attractive selling prices [4]) make 

probable their increasing presence in the future. For the 

sustainability of the electrical system, such wind farms are 

interconnected by multi-terminal large offshore networks, 

connecting them as well to transmission networks [5]. Fig. 2 

illustrates the classical configuration considered by 

stakeholders, to connect off-shore RES and storage units to 

the main grid.  

The WINPOWER
1
 project aims to design realistic, robust 

and stable control for off-shore networks connecting 

renewable sources and controllable ones to the main 

electricity system. Each actor must embed its own local 

physical control system, but global coordination mechanisms 

should be designed as well. Indeed, inherent RES 

characteristics and the addressed network configuration do 

not allow stakeholders to independently participate to the 

electricity market [6] as market rules constrain the different 

stakeholders on the network to appear as a unique (virtual) 

entity, from the point of view of the market, requiring 

management methods specifically suited to this task. 

 

 
Fig. 2. Physical configuration. 

 
1  Research project federating 4 companies and 5 research institutes, 

funded by the French National Research Agency. 
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Existing solutions for renewable market participation 

(short-term markets, Virtual Power Plants (VPP)) do not 

apply to these new configurations [7], mostly because they 

are not designed to handle multi-actors configurations – It is 

the case of the network addressed in our work (Fig. 2): as 

producers got to collaborate in order to participate as one to 

electricity markets, global control strategies are needed to 

manage them, addressing especially:  

 The transmission and storage of supplemental energy 

while keeping the sustainability of the system, 

 The optimization of all parties’ financial equations 

(according to their own interests). 

Such a solution falls into a paradigm recently introduced in 

the renewable management literature, Cooperative Virtual 

Power Plants (CVPP) aiming to model the collaboration 

between numerous decentralized, autonomous (renewable) 

producers. CVPP promote the coalition of RES to profitably 

sell their aggregated (i.e. more reliable and efficient) energy 

to the Grid. Our work lies within this context. 

Within the project, our goal is to optimize day-ahead 

market participation of producers willing to collaborate and 

behave as an aggregated entity. We propose in this paper to 

model the CVPP behavior as a Markov Decision Process 

(MDP). This allows us to express the multi-actors 

configuration and to handle the uncertainty of RES in order to 

optimize day-ahead market participation of the CVPP. 

In Section II, we first describe the physical network 

configuration considered in the WINPOWER project. We 

present the market context, and position our work into 

renewable management literature. In Section III, we 

formalize the problematic of multi-actors resources 

aggregation and control for market participation. Then we 

detail our aggregation mechanism proposal in Section IV. In 

Section V, we present the simulations performed and show 

our proposals utility to renewable producers gathered in a 

CVPP. Finally, Section VI discusses obtained results and 

present short term perspectives to this work. 

 

II. WORKING CONTEXT 

A. Market Context 

In EU, the integrated and coordinated market has been 

initiated to establish competition in electricity exchanges. Its 

objective is to integrate a maximal part of electricity flows (in 

order to create a low electricity price, reflecting demand and 

offer signals on the market) and to reach an optimal mix (i.e. 

a mix with the highest social welfare
2
) using an auction 

mechanism. If other types of exchanges exist (bilateral 

contracts, options, etc.), they follow auction price signals. We 

will thus focus on the main auction market: the Spot 

Day-ahead Market. 

In the day-ahead market, participants provide orders 

(offer/demand) for the following day [8]. They day is 

subdivided into 24 equal time-slots; for each time-slot, 

participants state electricity quantities and desirable prices at 

which they wish to buy/sell them. Exchange modalities 

(prices and volumes for each participant and time-slot) are 

defined by the market auction, the day ahead. On D-day, for 

 
2 defined as benefits of market participation for producers and consumers 

[8]. 

each time slot, participants have to respect contracts made the 

day ahead or pay penalties whose values are defined in 

function of the distance between the contract and its 

realization. 

As introduced in the previous section, RES such as the 

wind farms of the WINPOWER project need to appear as one 

entity from the point of view of the market; it allows them as 

well to operate more reliably and to gain from this 

configuration. A framework to allow that is thus needed. We 

present, in the following section, existing approaches towards 

renewable optimal market participation and their respective 

limits. 

B. Related Work 

Current solutions used to manage renewable 

characteristics are of two types: 

 Short-term markets participation, 

 Virtual Power Plants (VPP). 

Short-term markets aim at taking advantage of the higher 

accuracy of short-terms meteorological predictions [9]. It is 

more profitable for a renewable producer to participate in 

these markets, as their relatively short horizon permits to 

avoid imbalances and thus maximize market revenues [10]. 

They can also be used as a balancing solution to avoid 

long-term market contracts imbalances. Yet, the shorter a 

market horizon is, the relatively lower its volumes of 

exchanges are; thus, this solution cannot be considered as the 

only commercial outlet. 

Another way to avoid renewable imbalances is to use 

controllable means to balance them; this solution is termed as 

VPP.  

Indeed, the stochastic nature of renewable generation 

results in prediction errors; which need to be managed. VPP 

associate renewable to controllable devices in order to take 

advantage from the both. Virtual Power Plants have been 

defined as coalitions of multiple energy producers and, 

possibly, energy storage providers that come together to sell 

electricity as an aggregate [11]. Often, controllable sources in 

VPP must be scheduled, taking into account uncertainty 

information available prior to delivery time, to give an 

optimal utility [12]. 

To our knowledge, in most existing models, controllable 

resources utilization is planned only after market 

participation, to meet furniture contracts priory made [13], 

[14]; moreover, a number of them deal with the case where a 

unique stakeholder owns the whole VPP production means, 

and use controllable resources as backup means. Or, in a 

configuration with substantial storage amounts to control, 

controllable units cannot be considered only as adjustment 

variables; indeed, their respective utilities pass by their own 

market participation. 

So, the VPP paradigm is not suited for a collaborative 

multi-actors configuration [15], where producers coalesce 

willingly to sell their production (without relying on any 

external entity), as it is their best interest to do so [7]. To 

overcome this limit, recent works proposed Cooperative VPP 

(CVPP) as a framework to aggregate small and distributed 

energy resources in the electricity supply network [16]. They 

propose payment schemes which incentive the actors of 

CVPP to provide truthful predictions of the future generation. 

However (and unlike the studies aforementioned), as 

controllable resources are not scheduled, given predictions 
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uncertainty, the resulted reactive operation is suboptimal as it 

does not consider the risks of difference between contracts 

and future realizations. 

Our current work fits in this paradigm: In this paper, our 

goal is to develop an optimal control framework (allowing 

risk management and resources planning for market 

participation) for CVPP implementation. In contrast to 

studies previously cited, we thus consider controllable 

production means in the computation of the offer to submit to 

the day-ahead market. Associated with the consideration of 

RES production uncertainty, we believe that our proposal 

leads to significant improvements regarding both the network 

stability and the economic viability of RES stakeholders. In 

the following section, we first present the control architecture 

proposed to deal with off-shore CVPP before detailing the 

key points of renewable and controllable sources 

aggregation. 

 

III. ORGANIZATIONAL MODEL AND FORMAL DEFINITIONS 

The norm IEC-62325 [17], describes the different existing 

roles in the energy market and details the possible 

interactions between the actors. The organizational model 

that we propose for a CVPP relies on it. In our case, physical 

actors have a producer role and virtual actors have either an 

aggregation or a market participation role. 

These three types of roles are distributed over three layers 

on our organization proposal (see Fig. 3): 

 Production layer: Each production actor represents a 

wind farm or a storage device, owned by a stakeholder. 

It sends relevant data (i.e. prediction and uncertainty 

information associated for RES, storage characteristics 

storage devices owners) to the aggregation layer.  

 Aggregation and Decision layer: The aggregation actor 

determines the optimal aggregated resources planning 

for market interaction. 

 Market Interaction layer: The market interaction actor 

uses the planning elaborated at the previous level to 

interact with the electricity market and contract 

generation amounts for the following day, on behalf of 

the whole coalition. 

The key layer in this organization is the aggregation and 

decision one and it is the issue we address in our work.  

Off-shore wind farms make prediction about their future 

production but there are errors in the predictions. Other 

producers like mass storage devices can take advantage of 

their controllability in such a physical configuration. The 

question this layer aims to answer is thus: How to plan 

beforehand their utilization such as the market participation 

of the CVPP is optimal and that the different stakeholder’s 

utility are maximized. 

A. Production Prediction and Uncertainty 

The aggregation function takes as input individual 

production predictions and associated uncertainty. The 

output is a production offer for the coalition. 

 

                                   (     )                         

(             )               

 

where:  

     is the number of producers (  is the number of 

renewable producers and   is the number of 

controllable resources) 

   is the number of time slots 

   is the set of possibly produced values 

   is the set of uncertainty functions 

          is the p-values sequence of predicted 

energy amounts of producer   

            is the p-values sequence of uncertainty 

functions of producer i 

 (        )     is the CVPP planning, defining its 

future generation amount. 

 
Fig. 3. Organization of the roles in the CVPP. 

 

As introduced in Section II, on the day-ahead market, 

     and the utility of a planning mainly depends of its 

distance to its effective realization (as revenues and network 

safety directly depends of that distance). Thus, the optimal 

planning should maximize contracted revenues and minimize 

the risk induced by the eventual distance with its realization. 

                           (       )                          

        (             )        

              
 (         (                   )) 
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where:  

 (       )       is the CVPP 24-values revenues 

vector 

 The function   expresses the estimated gap between the 

computed planning and the future possible realization. 

This distance is predicted based on the producers’ 

uncertainty functions 

 The function   expresses that the utility of          is 

function of the revenues         of the production plan 

if it were to be perfectly realized, and of the possible 

deviation between planning          and effective 

realization, represented by           . 

Reference [18] defines the risk over a decision as a 

function of: 

 The likelihood of the decision being a regrettable one, 

 The amount by which the decision is regrettable. 

The controllable means (i.e. those which offer variable 

generation volumes) makes it problematic to find the quantity 

that provides maximal contracted revenues and minimal 

penalty expectation, in each market time-slots. More, there 

exists a temporal dependence between market time-slots 

decisions; local optima computed for each time-slot can lead 

to global (over a day time) suboptimal decisions.  

A solution is to keep a certain part of available capacity of 

charge (respectively discharge), in order to use it as backup, 

on the delivery day. Because of the possible future dynamic 

of the backup capacity utilization, it comes down to optimize 

the controllable means under uncertainty, with the 

information available day-ahead. 

Several works studied the obtainment of such uncertainty 

information [19]; we will not focus on this aspect, but its 

utilization to obtain optimal controllable resources set points 

in a CVPP environment. 

B. Background on Markovian Decision Processes 

Markov Decision Processes are a mathematical control and 

decision paradigm which allows to model such a 

multi-producers configuration, controllable devices 

dynamics and to make decision over resources utilization, 

given possible outcomes and temporal dependencies over 

decisions. 

The Markov property reflects the characteristic of a system 

to embed in its state at time   all the information necessary to 

predict its state at time    ; knowing previous states doesn't 

provide more useful information.  

A MDP is defined by its set of states, actions and for each 

combination of state and action, the one step dynamic of the 

environment [20]. Formally, it is a tuple              , 
with : 

   is a finite state of states 

   is a finite state of actions 

               is a transition function, 

associating to each state     combined to any action 

   , the probability to go in a state      

         is a reward function, associating to each 

state     combined to any action    , an 

immediate expected reward 

         is a discount factor reducing future rewards 

value compared to current decision rewards. In our 

work, we will set it to 1, considering future rewards to 

be as valuable as immediate ones. 

A policy   associates to each state    , the action     

a decision maker should make; and the expected cumulated 

reward can be recursively expressed as the sum of immediate 

reward and weighted (by probabilities) expected rewards in 

future states (future times) : 

 

  ( )   (   ( ))   ∑  

    

 (   ( )   )    (  ) 

 

Then, the optimal policy belongs to the set of policies that 

respects the following optimality equation: 

 

  ( )        
   

( (   )   ∑  

    

 (   ( )   )

   (  )) 

 

This formulation allows sacrificing short-term 

performance in order to optimize long-term one, using 

sequential recursive optimization. MDP have been an 

intensive research subject for years and several and efficient 

resolution algorithms have been proposed, experienced and 

confirmed; although their efficiency is limited by the 

uncertainty information accuracy, it constitutes a practical 

and easily implementable solution paradigm. 

In the following section, we propose a formal definition of 

the MDP model expressing the behavior of the CVPP. 

C. Notation 

In the remainder, we use superscripts to denote particular 

subsystems (i.e. a participant of the coalition) and subscripts 

for the time index. Thus   
  denotes the state of the subsystem 

  at time  . 

      (  
 )    

    
        

  is the Cartesian product 

(the product in case of cardinals) of variables   
    

         . 
We use canonical representations of Markov decision 

process, either by expressing the dynamic of the system 

      (        ) or by writing transition ( ) and reward 

( ) matrices of the MDP, such that: 

A is a sequence             with            such 

that 

 

 {
  ( )   

 ∑       ( )   
       

 

And  

                     such that 

 

{
  ( 

     )   

 ∑  
 
  ( 

     )   
                   

 

r is a sequence           with               
          

D. Model Inputs 

Let's consider the participation of the WINPOWER 
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coalition into the day-ahead market, for a given day. The first 

task of the aggregator/CVPP is to collect all the relevant 

information available. The second is to compute an optimal 

offer which: 

 Integrates as much as possible CVPP generation into the 

market, 

 Minimize the risk of seeing the coalition effective 

generation be far from the offer made on the market. 

It reduces to a maximization of revenues collected from 

market participation of the coalition (it corresponds to 

producers’ revenue maximization, if a relevant distribution 

mechanism is available, but this task is out of the limits of our 

current work so we will assume it available). 

As we said before, the market is divided into      

operation time-slots a resources optimization need to be 

performed to make an optimal offer in each of them. 

Available information is provided to the central controller 

(the aggregator) by each actor in the coalition and for each 

time-slot: 

RES actors provide forecast information about their 

expected generation at day+1 associated to uncertainty 

information
3
. 

Formally: 

At time          , and for the actor          , the 

information provided is the tuple   
  (  

    
    

 ) where : 

   
  is the forecast point prediction 

   
  is a finite set of possible errors over the forecast 

value   

   
    

        is a function such that     
    

  (  
  is a 

possible error),   
 (  

 )    and ∑    
   

 (  
 )   . It is a 

function giving the probability of each possible error to 

appear, the following day. 

This tuple allows to express that the possible amounts of 

energy generated by the actor   at time     
  is : 

 

  
    

    
   

with    
    

        
    

  

 

where       
  corresponds to the maximum production 

capacity of  . 
When the forecast is perfectly accurate, the effective 

generated amount of energy equals the forecast point 

prediction i.e.   
    

    
   . 

The optimal state of charge
4
 of a storage device   is 

computed in each time slot, from its characteristics (minimal 

state of charge (      
 

), maximal state of charge (      
 

), 

charge (       
 

) and discharge rates (          
 

)5
, initial 

state of charge (    
 
) and if applicble, previous decisions 

made. 

Formally: 

At time  , the state of the actor               can 

be computed from the following initial informations and the 

set points decided at the previous times :  

 
3This latter can take, for example, the form of a discrete probability 

distribution over possible errors of the forecast tool.  
4  For the sake of simplicity, we assume in this paper that the SOC 

determination error is negligible. 
5 We assume that these rates are constant regarding computation times 

and states of charges. 

 The tuple (      
 

       
 

        
 

           
 

)  is 

provided with     
 
 that denotes the state of charge of 

the device before the first computing time.  

 At time t, the set   
 
 such that     

 
   

 
 is the set of 

possible set points of the controlled device  . It is a 

function of the state at the previous time, the dynamics 

and the characteristics of the device : 

 

  
 
  (      

 
 (      

 
       

 
        

 
           

 
)) 

 

To perform its decision, the CVPP needs a view of the 

future state of the market. Market clearing prices predictions 

are computed for each market time slot; each market point 

forecast can be associated with some uncertainty 

information. 

We’ll consider in our work that we only have a point 

prediction of the MCP either perfect or imperfect, and 

possibly along with an associated uncertainty.  

The penalty risked by the CVPP in each market time-slot, 

is a function   of the future     and a penalty factor   

predefined in market rules such as the penalty cost is 

 (      )              

 

IV. MDP AGGREGATION MODEL 

Recent theoretical works [21] showed that networked 

systems coupled via communication links, each one evolving 

as a Markov process, and controlled by a centralized actor, 

taking optimal sequential decisions over a finite state space 

and in partially observable environments, can be represented 

as an unique Partially Observable MDP (POMPD) which 

itself can be converted into an Information State MDP 

(IS-MDP), and solved using classic dynamic programming 

algorithms, if a relevant information state can be built. 

We draw on this work to propose in the following section a 

representation of the CVPP under the form of a MDP, 

allowing the aggregation agent to perform optimal decision 

about the control of available resources. 

A. A First Model Proposal 

To model our CVPP, a first approach is to consider it as a 

whole discrete time dynamic system, where the state of the 

system at time     is denoted   . The system dynamics are :  

 

      (        )                           (1) 

 

With       is the state of the system at time   such that 

         (  
 )        (  

 
)  

From this definition, 

    is the combination of local states of the CVPP actors 

at time  . The state of an RES   at time   is the error 

  
    

  associated to the prediction   
  and the state of 

controllable devices   is the set point     
 
 decided as 

action at the previous time    . 

       is the control action or the decision taken at 

time   such that          (  
 
). From this definition, 

   is the combination of local decisions made on any 

controllable device being a part of the CVPP, at time  . 

We define a local action   
 
   

 
 as the choice of a set 
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point     
 
.  

    is a random variable which influences the transition 

of the system between two computation periods. Here, 

      is defined by the combination of random 

processes            
    

        of errors over the 

generation prediction or RES actors.   

Equation (1), expressing the dynamic of the system, from a 

given time to the following one, means that the state of the 

system is defined as the combination of its components state 

and that it changes between two computation periods, as a 

function of decisions taken and wind realization. 

As the state of the system and its possible transitions are 

dependent of the time, we affine the expression of the 

matrices as following : 

 

{
 

 
  (  )         

∑  
     

  (  )   

  (  )          

 

 

                           such that  

 

{

  (          )                               

∑  
  

  (          )                    
 

 

                        

  

Here : 

A is the transition matrix that define for each time 

            the transition probabilities from each state 

      to each state           given any possible action 

at the time t      . 

Given the explanation we gave about the dynamic of the 

system, we can write for all      
        

      
      

    
  the following : 

 

  (  )    if                   
 
     

 
 

  (  )              
 (  

 ) else. 

  (          )    if        
          

  

  (          )              
 (  

 ) else. 

 

We define the reward of the transition to a state    as : 

 

  (  )      ̂  (      )   (    ̂   )                      

      (  )   (   ) 

 

where 

   est le cout de la production renouvelable is obtained 

from the cost provided by RES actors, 

   is the cost of using the storage, 

    ∑               
  is the total amount of generation 

predicted by RES actors, 

    ∑               
  is the total amount of errors in the 

particular transition scenario considered, 

     ∑             (    
 
       

 
)  is the storage 

amount used by the transition process, 

            is the amount reserved by the 

storage for the following day, 

 {
       (        )       

       (        )       
 is the 

remaining error amount the CVPP has to pay penalties 

for, 

             is the storage amount sold 

specifically in the day-ahead market. 

This means that at each time, the set of possible states in 

which the MDP can be is driven by the probability 

distribution of errors over predictions and by the action made 

to handle it ; and that the cost of each action is given by how it 

handles the current error cost as well as how it allows 

controllable means to participate into the market to acquire 

additional revenues. 

The model allows integrating the uncertainty information 

associated to      as well, either by computing a mean 

value of its future possible values, or by computing expected 

rewards of decisions, given      possible values. 

However, this architecture presents two major drawbacks :  

 It is very difficult to compute the solution of such a 

MDP because of its complexity and the size of the 

solutions set. As an illustration, the number of possible 

states is 

 

          (    (  
 ))          (    (  

 
)) 

 

where      is the cardinality function. 

And the size of the transition matrix (respectively the 

reward matrix) is 

 

        

 

where                 (  
 
) is the number of actions.  

It requires substantial computation time and memory to 

compute and store the analytic form of the MDP, prior to an 

eventual solution computing. To overcome this latter 

drawback, we took advantage of matrices sparse 

representations [22] to reduce memory costs by storing only 

non-zeros value of the MDP matrices (i.e. transitions and 

rewards from states    to states     ). 

 This model is suited for the real time control of the 

CVPP as it assumes that the current state is actually 

known at the computation time. Yet, this is not our 

actual case as the idea is to set the needs for the 

following day, the errors values for each hour are not 

known. We are in the case of a Partially Observable 

MDP where the current state is not known. So, to obtain 

a relevant MDP expression, a solution is to extract this 

belief over the distribution of states at each computation 

time from the POMDP.  

B. Information State Theory 

The probability distribution over the possible states in 

which the system can be at each time constitutes a belief state 

that can be used as information state for the POMDP 

described above. The information state of a POMDP consists 

of either a complete history of actions and observations or 

their corresponding sufficient statistics [21].  

Extract this information from the POMDP allows to reduce 

the state space of the system to the set of controllable devices 
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set points ; its dynamics are deterministic and are driven by 

the actions taken at every time ; the reward function over each 

state and action is dependent of the possible errors 

distribution.  

We obtain an IS-MDP whose expression is : 

 

      (        )                            (2) 

 

With       is the state of the system at time   such that 

         (  
 
). From this definition : 

     is the combination of local states of the controllable 

actors at time  . 

        is the decision taken at time   such that 

         (  
 
) . It is the combination of local 

decisions made on any controllable device being a part 

of the CVPP, at time  . 

 As the random variable of errors over the predictions is 

extracted in the information state, the MDP is a 

deterministic one where the transition is driven only by 

the action (the state at time   is always the one chosen at 

the previous time). 

 The belief state impacts the reward over each action; at 

time  , it is the distribution of  

 

     
      

          
  

 

Such as  (  )   (  
 (  

 )) and it impacts the reward of 

action decided at time  . 

The MDP associated to such a dynamic is the tuple (   ) 

defined for every        
          

  as: 

1)   (  )                         
 
     

 
 

  (  )                         
 
     

 
 

  (          )              
        

  

  (          )              
          

  

2) And the reward is computed in function of the belief 

state as : 

 

  (  )      ̂  (      )   (   )   (  )

 ∑  
  

 (  )( (    ̂   )     ) 

 

This aggregation models allows the collaboration between 

renewable actors. Indeed, if a new RES actor is integrated in 

the coalition, the belief it has about its states is integrated in 

the belief state of the coalition and the optimal planning is 

computed as well with the updated reward function. If a new 

controllable device is integrated in the coalition, the state of 

the MDP is updated with this new information and the reward 

function remains the same. 

 

V. SIMULATION AND RESULTS 

We implemented the proposed model on a network 

test-case based on the physical architecture presented in Fig. 

2. We simulate a cooperative operation (CVPP) and compare 

the results to a non-cooperative configuration (i.e. when 

every producer acts on his own). Then, we show that a 

day-ahead optimization of CVPP resources as we propose 

gives better results than using controllable resources in the 

CVPP as a backup solution, as proposed in the reference 

work of [13]. We present hereafter our simulations modalities 

and objectives, and we end by an analysis of the simulations’ 

results. 

 

 
Fig. 4. Example of renewable day-ahead predictions and effective 

generation. 

A. Simulation’s Description 

1) Wind farms 

We consider two wind farms with a nominal capacity of 

100 MW and two sets of data over their operation between 

February 1
st
 and March 31

st
 2008: 

 Day-ahead prediction data is provided for the 24 

time-slots of the following day. 

 Effective production data of each hour of the following 

day is provided as well. 

Data is simulated on the basis of a statistical model 

calculated over several wind farms, as described in [23]. Fig. 

4 shows an example of prediction and production values, for 

the 24 hours of a day. 

2) Controllable device 

The network that we consider associates the two wind 

farms to a storage device: it is an on-shore STEP storage 

device (a well-known technology, for which utilization costs 

are available), with a nominal capacity of 200 MW. We 

assume charge and discharge rate to be 200 MWh. Variable 

cost of storing (respectively retrieving) one MWh into the 

storage device (respectively from the device) are 

approximated to a constant value of 10 €. It is a likely value 

obtained through off-line optimization of storage operation. 

Network links are designed to allow the storage in 

(respectively the retrieval from) the device of the whole 

nominal capacity. These realistic hypotheses have been 

validated by our industrial partners in the context of the 

simulation of our proposals.  

 

 
Fig. 5. An example of market prices evolution within a day operation. Prices 

for February the 1st 2008 [24]. 

 

3) Market prices and penalties 

We assume that the coalition’s generation is negligible on 
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the day-ahead spot market i.e. it does not considerably 

influence the market auction outputs. Given this assumption, 

we use relevant historical market data to simulate a market 

environment. We use data (available on the EPEX website 

[24]) of February and March 2008. We consider a perfect 

prediction of future Market Clearing Prices. Fig. 5 illustrates 

prices variability within a same day for February the 1
st
 2008. 

The CVPP is a price-taking entity into the market, so the 

whole amount proposed is always accepted on the market. 

Indeed, on the time period considered, renewable generation 

marginal costs are quite low compared to MCP values. We 

assume that any difference between the contracted and 

realized generation is penalized, and that no feed-in tariffs are 

considered for renewable producer (i.e. the CVPP acts as a 

conventional producer). The market penalties for a given 

hour slot   is calculated using the following equation: 

          
          (   )    

     

where   
     is either the deviation in MW from the 

contracted amount by the CVPP at time   (given by the 

optimization of controllable resources in the CVPP), or the 

sum of wind farms predictions absolute errors values (when 

their independent market participation is assumed). 

Finally, we use the penalization factor        applied in 

2008 by RTE, the French electricity transport network 

manager [25]. 

4) Management strategies 

In order to evaluate the performance of our proposal we 

compare it to different management strategies. The 

considered strategies are:  

a) Perfect market participation 

It is the reference case, when producers forecast perfectly 

their future generation and contract these amounts with the 

market. The storage device optimizes its independent 

participation to the market, given market clearing prices 

evolution within the day.  

b) Independent producers’ basic strategy  

It is an independent operation of producers, with a 

penalization of prediction errors. Every producer acts on its 

own, there is no coordination between actors and the risk is 

not managed (i.e. penalization amounts are maximal). 

c) CVPP reactive backup strategy  

The storage is used on the delivery day to meet contracts 

established with the market the day-ahead. It is a reactive 

resource used exclusively to backup predictions errors; it 

does not take into account the storage dynamics or market 

penalties evolution. 

d) CVPP optimized backup: 

This strategy implements the coordination solution as 

proposed in [13]. The storage is optimized the delivery day as 

a backup solution, to minimize market penalties. 

Nevertheless, as we stated in our work, it corresponds to an 

optimization case where no uncertainty information is used to 

allow a day-ahead participation of controllable devices. It 

constitutes also the lower bound of efficiency of our method 

proposal.  

e) CVPP MDP strategy  

This strategy implements the Markov decision process 

described in section IV to coordinate the operation of the 

actors in the CVPP in the day-ahead market. We simulate an 

operation case where the aggregator knows prediction and 

used them to optimally schedule the storage operation for 

error management and in the day-ahead market for additional 

revenues. It constitutes an upper bound of efficiency of our 

method proposal. 

 
Fig. 6. Various independent and CVPP strategies comparison. 

 

 
Fig. 7. CVPP strategies comparison on cumulated revenues. 

B. Analysis of Results 

Fig. 6 depicts the results of executing the different 

management strategies in terms of revenues. The black curve 

represents the first case, when producers in the CVPP 

perfectly predict their generation amounts; it represents the 

maximal amount of revenues the CVPP can acquire on the 

market, if perfect predictions tools were used for the 

day-ahead market participation. When no error management 

is performed, as producers participate independently to the 

market (case 2 illustrated by the blue curve), the revenues 

decrease significantly – inducing the need of a coordination 

solution. In a CVPP configuration with the storage used as a 
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backup reactive solution (case 3 illustrated by the green 

dashed line), the cooperative operation results in an 

immediate revenues increase. The optimization of this backup 

strategy the delivery day, as proposed in the literature gives 

better results (depicted by the orange line) than the reactive 

strategy (even if they are not significant, because of the 

substantial amount of storage capacities available to be used 

in a reactive way). The CVPP MDP strategy results are 

bounded by these latter results (our method proposal always 

outperforms the state of the art solution) and the red line (this 

upper red line depicts the best results that can be obtained 

with our method, whatever uncertainty information is 

available to the storage device for its operation optimization). 

Fig. 7 shows the cumulated revenues of the three CVPP 

management strategies over the computation time. Our 

strategy outperforms the other two CVPP strategies. As 

shown if Fig. 7, by the end of the simulation period the MDP 

CVPP strategy can increase the revenues of around 38% 

(increase of ~1.4Meuros) compared to the optimized backup 

strategy. 

It has to be noted that although it outperforms the 

optimized backup strategy, the performance of the CVPP 

MDP strategy we propose is highly dependent on the quality 

of the generation errors distribution. The quality of this 

information is a challenging issue to obtain optimal market 

participation results. 

 

VI. CONCLUSION AND PERSPECTIVES 

Simulations results presented in the previous section 

showed the performance of our proposal for CVPP 

participation to the day-ahead market. We presented at the 

beginning of this paper the general context of our work and 

the physical network it addresses. We highlighted that the 

literature in renewable market participation management 

lacks solutions for the particular issue addressed, a CVPP 

(with substantial controllable resources available) 

participation into the day-ahead market. We formalize this 

issue and show how Markov decision processes constitutes a 

relevant solution approach to resolve the cooperative market 

participation of a coalition of RES actors and controllable 

ones. 

We proposed a classical MDP model and showed that our 

problem lies in the particular context of partially observable 

MDP. We took advantage of information state theory to 

recast the POMPD into a classical MDP, solvable using 

classical resolution algorithms developed in the literature. 

Then we simulated its results through different strategies 

comparisons and showed how it outperforms the literature 

management solutions (up to 38% better, depending of the 

uncertainty information available to the CVPP).  

Nevertheless, this work can be considerably improved by 

an addition of the intra-day market participation to the 

day-ahead participation of the CVPP. Indeed, to optimize the 

near real-time operation of a CVPP allows increasing 

revenues as the information available is more accurate. This 

real-time optimization makes possible to balance residual 

errors (thus market penalties) from deviations between 

contracts made and effective generation amounts. Moreover, 

several market participation aspects which are not the core of 

our work are not considered in the study, for instance, 

obtaining the uncertainty information associated to 

day-ahead predictions, the prediction of market clearing 

prices, etc. Nevertheless, these subjects have been widely 

studied in the literature. 

The main pitfall of our proposal is that producers are 

constrained to share sensitive information with the 

aggregator, i.e. the distribution of generation’s errors and 

storage market participation strategies. Besides the producers 

do not intervene in the decision making process, it is totally 

centralized by the aggregator. In order to increase the 

acceptability of our solution, those issues must be solved. The 

most promising research direction that we are currently 

exploring is to model the decision making mechanism in a 

distributed manner. The key idea is to maintain the 

confidentiality of the sensitive information and give the 

control of the decision making process to the producers. This 

involves some adaptations of our work and a new 

formalization as a distributed coordination problem. We are 

currently modeling and implementing this new approach by 

using the multi-agent systems paradigm and the recent 

research results on distributed Markov decision process.  
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