

Abstract—Design and functional implementation of a

16-point pipelined FFT architecture is presented. The
architecture is based on the radix-4 algorithm. By exploiting the
regularity of the algorithm, butterfly operation and multiplier
modules were designed. The architecture adopts four butterflies,
and the pipeline stage is optimized to balance the processing
speed and the area. It was modeled by VHDL, and synthesized
in FPGA. By adopting this architecture, the data throughput
could be 2M/s. It is extensible for high point FFT.

Index Terms—Fast Fourier transform (FFT), modular
architecture, pipeline, VLSI design.

I. INTRODUCTION
The fast Fourier transform (FFT) class of algorithms [1] is

widely used in communication and digital signal processing.
The FFT algorithm is considered one of the basic algorithms
in many DSP projects. Nowadays, FFT is the key building
block for the mobile communications; especially for the
orthogonal frequency division multiplexing (OFDM)
transceiver systems [2].Implementation of FFT of different
architectures, for fast and efficient computational schemes,
has attracted many researchers. The methodology of FFT
simulation, implementation, and verification plays a key role
in the industrial or consumer electronics areas, for example,
the FFT image or acoustic processing, encoding and
decoding, harmonic analysis in renewable energy and so on.
The FFT is a typical computation where the memory access
intensively and the high parallelism is needed. VLSI
realization of FFT algorithm, should have pipelined
architecture and/or parallelism, be regular and modular [3].
At algorithm level, it should achieve the multiplicative
complexity as low as possible. At the architecture level, use
the delay-feedback buffering strategy to minimize the
memory size. It should have modular and regular modules,
local routing, and low control complexity.

The discrete Fourier transform (DFT) X(k) of an N-point
sequence x(n) is defined by

nk
N

N

n

WnxkX ∑
−

=

=
1

0

)()(k=0,1,…,N-1 (1)

⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅−⎟

⎠
⎞

⎜
⎝
⎛ ⋅=

N
nkj

N
nkW nk

N
ππ 2sin2cos (2)

In (2), the n
NW is usually referred to as twiddle factor.

Manuscript received April 10, 2013; revised June 14, 2013.
The authors are with the Department of Telematics, NTNU, Trondheim

7491, Norway (e-mail: jiangw@item.ntnu.no).

Selecting an FFT radix is the first step on the algorithmic
level. It is mainly a trade-off between the speed, power and
area for the number of transistors. High-radix FFT algorithms,
such as radix-8, often increase the control complexity and are
not easy to implement. And to radix-2 FFT, there is the
increase in the number of butterfly elements compared with
radix-4. So the radix-4 was selected in this paper.

To understand the radix-4 FFT algorithm intuitively, we
can examine the signal flow graph (SFG) as shown in Fig. 1.

x1

x 0

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x 10

x 11

x 12

x 13

x 14

x 15

X 0

X 8

X 4

X 12

X 2

X 10

X 6

X 14

X 1

X 9

X 5

X 13

X 3

X 11

X 7

X 15
-1

-1

-1

-1

-1

-1

-1

 -1

-1

-1

-1

-1

-1

-1

-1

-1

-j

-j

-j

-j

-j

-j

-j

-j

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0
1 6W

2
1 6W

4
1 6W

6
1 6W

0
1 6W

1
1 6W

2
1 6W

3
1 6W

0
1 6W

3
1 6W

6
1 6W

9
1 6W

Fig. 1. Signal flow graph of 16-point radix-4 FFT

We could learn from Fig. 1. that –j terms are extracted. The
complex multiplication with –j are accomplished by
exchanging the real and the imaginary parts of the incoming
data and then inverting the sign of the imaginary part. The
SFG is also the base for designing a butterfly operation. It
could be mapped to the architecture shown in Fig. 2.

The fundamental principle of Cooley and Turkey’s
algorithm for computation of N-point DFT, is that to
decompose a given Discrete Fourier Transform (DFT)
problem into successively smaller DFTs. The algorithm for
the High Speed Pipelined DIT FFT architecture is based on
the following equations:

T
NkXNkXNkXkX ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +

4
3,

2
,

4
),(=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

jj

jj

11
1111

11
1111

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

)(
)(
)(
)(

3
3

2
2

1

0
0

kFW
kFW
kFW
kFW

k
N

k
N

k
N

N

 (3)

here

An Implementation of Pipelined Radix-4 FFT Architecture
on FPGAs

Jiang Wang and Leif Arne Ronningen

Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014

101DOI: 10.7763/JOCET.2014.V2.100

F 1n (k)= ∑
−

=

⋅+
1)4/(

0
4/21

2

2)4(
N

n

kn
NWnnx

for n =0, 1, 2, 3; k=0,1,…,
4
N

-1.

The 0
NW , k

NW , k
NW 2 , k

NW 3 also could be extracted and
listed in Fig. 1. In the hardware implementation, they are
stored in the RAM with 16-bit fix point.

II. RADIX-4 PIPELINE FFT ARCHITECTURE

A. Delay Feedback Pipelined Architecture
There are two main delay buffering strategies of pipelined

FFT architecture [4], [5] in the butterfly stages. One is
delay-commutator (DC) architecture, and the other one is
delay-feedback (DF) architecture. In above two architectures,
FIFO is used to buffering the intermediate data. For the DC
architecture, the utilization of each FIFO is 50%. For the DF
architecture, the utilization of each FIFO is increased to
100%. The DF strategy is adopted in this implementation as
shown in Fig. 2.

There are 4 stages shown in Fig. 2. Every stage has one
butterfly element. To the butterfly operation, the input data
and out put data could use the same address, the
corresponding RAM could be divided into four groups for
the four butterflies.

Buffer
BFI

8FIFO

Buffer
BFII

4FIFO

Buffer

RAM

Buffer
BFI

2FIFO

Buffer
BFII

1FIFO

Fig. 2. Radix-4 pipeline architecture.

By observing the Radix-4 SFG, every butterfly stage has
only one or two butterfly modes. They are denotes as BFI and
BFII here. The BFI mode implements common butterfly
operation. The BFII not only includes the common butterfly,
but the butterfly whose input data will be multiplied by –j
before normal butterfly operation. The overall structure is
regular and suitable for VLSI implementation.

Merged Wallace
Tree

Register
Data

Twiddle factor
CSA BFI

2FIFO

Fig. 3. Repartition scheme for pipeline stage III.

The butterfly operation and the twiddle factor multiplier
both select modified-Booth encoding and Wallace tree. To
the stage III, the latency of a complex multiplication is
usually twice as long as that of a butterfly operation. So the
pipeline should be repartitioned to balance the latency. To
crack this problem, we merged the final adder (Carry Saved
Adder) and the BFI into one stage. It is shown in Fig. 3.

B. Memory Design
There are three different types of memory (RAMs) in the

architecture, which store the input values of data and
coefficient, and the output value of the result. The RAM is
designed to store one full set of data for 16-point FFT
computation. Both the real and imaginary parts of the data are
stored in fixed point representation as two different numbers.
So for a radix-4 butterfly operation we have 4 numbers
(2-real, 2-imaginary) to be stored and each number is 16-bit
long. The data can be read serially to be processed in the
radix computation element [6] [7]. The coefficient RAM and
the output RAM are similar to the data RAM. The coefficient
RAM that has 7 bytes denotes all of the twiddle factors listed
in Fig. 1.

C. Memory Controllers
The RAM controller controls the READ and WRITE

operations with proper address generation logic. The address
generation unit provides the read pointer, and write pointer.
The address generation is done using two modulo-4 counters.
The number of unprocessed data items in the RAM, and
overflow/underflow memory access, are controlled using an
up/down counter. Every stage has a buffer，its function is to
prepare the input data for the next stage. This buffering
function could also be realized by the memory controllers.
The counters produce the latency and signal the address
generator to prepare the data.

III. FUNCTIONAL IMPLEMENTATION
The architecture proposed in the above section has been

modeled in hardware description language VHDL with
generic parameters for transform length and word-length,
using fixed 16 point architecture. The presented architecture
is regular and extensive for high point, 32-bit FFT which is
used in 3D image processing systems.

Fig. 4. Test vector generation for source signal with two frequency

components.

Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014

102

The design methodology is from floating point model to
fixed point model. The Matlab behavior model is established
as a function model. Its PSNR is analyzed for specific
applications. Then the hardware C model is established as a
golden for VHDL verification. Fig. 4 is the test vector
generation. Fig. 5 is the RTL simulation of the FFT core. It
could be seen that the two frequency components are
detected accurately by the FFT core.

The design flow adopts both top-to-bottom and
bottom-to-top. In the top-to-bottom, the top level is
constructed with high priority, such as control modules, data
path and memory management. In the bottom-to-top, the
fundamental computation elements are established for the
more flexible modules construction, such as the adder and
multiplier combined to establish the complex multiplier.

Fig. 5. Simulation of frequency detection by the FFT core.

The prototype of the presented FFT architecture has been
fully synthesized by means of Altera FLEX10K
(EPF10K130EQC240-2) [8]. Experimental results show
throughput could be 2M/s.

The area/power consumption in the pipelined architecture
is dominated by the FIFO register files and the complex
multiplier. This is also considered as our future research
direction.

IV. CONCLUSION
An architecture for pipelined processing 16-point FFT has

been presented, which is regular and extensible for high point
FFT. The pipeline performance was enhanced by the
repartition of the multiplier and butterfly operation. The

prototype of the architecture has been synthesized and
verified by FPGA.

REFERENCES
[1] A. V. Oppenheim and R. W. Schafer, Digital signal processing, NJ,

Prentice-Hall, 1975. pp. 297-310.
[2] A. Sadat and W. B. Mikhael, “Fast Fourier transform for high speed

OFDM wireless multimedia system, circuits and systems,” in Proc. the
44th IEEE 2001 Midwest Symposium on MWSCAS, 2001, pp. 938.

[3] K. Sapiecha and R. Jarocki, “Modular architecture for high
performance implementation of the FFT algorithm,” IEEE Trans. On
Computers, vol. 39, pp. 1464 – 1468, Dec. 1990.

[4] S. S. He and M. Torkelson, “Design and implementation of a
1024-point pipeline FFT processor,” in Proc. IEEE 1998 custom
intergrated circuits conference, 1998, pp. 131-134.

[5] B. Kang and J. Kim, “Low complexity multi-point 4-channel FFT
processor for IEEE 802.11n MIMO-OFDM WLAN system,” in Proc.
Green and Ubiquitous Technology 2012 international conference,
2012, pp. 94-97.

[6] G. Bi and E. Jones, “A pipelined FFT processor for word-sequential
data,” IEEE Trans. On Acoustics, Speech, and Signal Processing, vol.
37, pp. 1982-1985, Dec. 1989.

[7] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal
circuits for parallel multipliers,” IEEE Trans. Comput., vol. 47, pp.
273-285, Mar. 1998.

[8] Altera FPGA devices, Altera Corporation. [Online]. Available:
http://www.altera.com/devices/fpga/fpga-index.html

Jiang Wang is a research fellow in Department of
Telematics, NTNU, Norway. His main research focuses
on the digital signal processing in industrial or consumer
electronics, including multimedia, smart grid, renewable
energy, signal processing platform and so on.

Leif Arne Ronningen is a professor in Department of
Telematics, NTNU, Norway. His research interests
includes multimedia technology, networked
Collaboration Spaces, near-natural virtual quality,
distributed heterogeneous processing architectures for
real-time embedded systems, performance evaluation of
quality shaping, as supported by DMP networks, the
DMP Architecture, specification and philosophy, and

application of DMP in arts.

Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014

103

