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Abstract—Wind generation is one of the fast growing and 

introduced resources among renewable energies through 

worldwide including Japan. As Japan, on the other hand, is an 

island country surrounded by ocean, the landscape topography 

suitable for wind generation is limited for the on-shore. 

Therefore, based on the wind map of up to year 2030, it is 

expected that new wind generation installation will be more 

suitable on off-shore rather than on-shore. For this reason, it is 

very important to determine the wind characteristics of the 

candidate area for installing wind generation, however in most 

cases of off-shore installation, existence of weather condition 

data is poor and needs lots of time and cost for measuring 

pin-point weather condition data. In this study, the goal of this 

research is to project a wind speed of an unseen area (where its 

weather condition data is not available) by mapping the seen 

areas (where their weather condition data are available) around 

the target area using the modularized Artificial Neural Network 

(SOM: Self-Organization Map). By learning the correlation 

between modularized ANNs of seen and unseen areas, the result 

of this temporal and spatial projection will be the prediction of 

 
segmenting the area as grid-style and learning it, it becomes 

possible to predict the wind speed more detail and more precise. 
It is believed, by the help of the proposed technique, a huge 

amount of time and cost will be saved for selection of off-shore 

installation point of off-shore wind power generation. Moreover, 

it will certainly contribute to the development and speed-up of 

off-shore wind power generation in the future. 

 
Index Terms—Artificial neural network, modular network 

som, projection, wind speed.  

 

I. INTRODUCTION 

One of the reasons that wind power generation has been 

spread in recent years is because the environmental problems 

such as greenhouse effect gas and global warming due to 

consumption of energy became worse than ever. IPCC 

(Intergovernmental Panel on Climate Change) mentioned 

that atmospheric level of greenhouse effect gas (i.e., carbon 

dioxide, methane, chlorofluocarbon, and the atmosphere of 

carbon monoxide) is increasing certainly by human activities, 

and there is a strong correlation between global warming 

with such greenhouse gas effects. It is also mentioned that the 

degree of carbon dioxide of contribution is the largest among 

all those greenhouse gas effects. The main artificial source of 

discharge of the carbon dioxide is consumption of fossil fuels. 

Therefore, attention has been focused on the renewable 
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energies as alternative energies to decrease consumption of 

fossil fuels in recent years. Wind energy is also the precious 

resources contributed to solution of global warming. [1], [2]. 

However, there are some disadvantages due to the 

characteristics of wind energy and landscape topography in 

on-shore of Japan as compared with other wind power 

high-introduced countries. In general, off-shore is known as 

better and suitable as for wind power generation, because the 

topography is less height and more flat on sea than angled 

landscapes on on-shore areas. In off-shore, wind speed and 

wind direction are more stable and the amount of power 

generation output is also stable. These issues will decrease 

the grid-connection stability problems to some extends. 

As Japan is an island country surrounded by the sea, there 

is almost no factor that prevent the passage of wind at sea, 

therefore off-shore is suitable for wind power generation 

such as flat plains. Due to the NEDO (New Energy and 

Industrial Technology Development Organization of Japan) 

report on Wind Road Map up to year 2030, it is expected that 

new off-shore wind farms will be installed more on off-shore 

in the near future. [3]  

One of the important factors necessary for selection of 

introduction point of wind power generation is proved to be 

the selection of wind conditions related to the candidate site. 

Obviously, the amount of power generation is reduced when 

unrelated weather condition information are used. Therefore, 

investigation of wind conditions before practical installation 

is required for optimal selection of the site. 

Although it is important to determine the optimal point 

through some procedures similar to on-shore, however as for 

off-shore case, advance wind condition survey is difficult 

from the viewpoint of time and cost. Because, a pole has to be 

installed and fixed by cable to the bottom of the sea or in case 

of deep sea, it should be stand floating platform and collect 

data at least for 1-2 years for further weather condition 

analysis. The followings are the difficulties in detail: 

• The existing weather data is few, so it is necessary to 

observe and collect weather condition data by providing a 

new technique for the candidate site. 

• Installation of meteorological equipment and transfer data 

from off-shore (under the sea cabling, etc.) requires more 

cost compare with on-shore. 

• For determination of the best installation site from the 

meteorological measurement point of view, it is necessary 

to measure plural points for the comparison. 

• As a result of the weather observation, some cases 

abandon the introduction from the profitability, risk is 

inherent. 

Based on the difficulties mentioned above, the 
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wind speed of target place. Furthermore, in this study, by 



  

break-through will be a way to find a technique to project 

weather condition data (for example wind speed in case of 

wind power generation) without direct measurement of 

meteorological data of the candidate site. By such technique, 

it becomes possible to reduce the cost and risk. In this 

research, our aim is to develop such this technique to project 

the wind condition of any points by using the other existing 

sites observation data. Furthermore, by segmenting the area 

more and learning it, it is possible to predict the wind speed in 

a more precise area. 

 

II. WIND SPEED PROJECTION TECHNIQUE 

In this study, two projections methods are used for wind 

speed projection as follows. 

A. Temporal Projection 

Wind speed is the data of time series change in a nonlinear 

behavior. Therefore, it is difficult to have a precious 

projection with traditional method because it requires a 

massive data. Some intelligent methods are proved to be 

effective for solving nonlinear problems, such as artificial 

neural network (ANN), genetic algorithms, deterministic 

chaos and so forth. These methods have been already utilized 

in many field’s projection, such as stock price fluctuations, 

temperature rise of earth, electric load forecasting, etc. 

In the past research of the authors of this paper, the ANN 

and deterministic chaos had confirmed that these methods are 

effective for the projection of wind speed [4], [5]. Fig. 1 

shows the concept of temporal projection. Wind speed of 

future (unknown) is projected from the past historical data 

(known). 

 

  
Fig. 1. Temporal projection.  

 

B. Spatial Projection 

As wind is caused by a difference in spatial atmospheric 

conditions and as the wind in continuous space is intended to 

be changed continuously, therefore, the changes of the 

displacement and wind speed are correlated. In the authors 

past research, the trends has confirmed that more information 

from neighborhood related to the wind direction of the target 

point make the projection result better. 

In this research, this projection is combined the above two 

factors and by using the algorithm of modular network 

self-organization map (mnSOM) through some simulations, 

it improved the projection. The ANN, to project temporally 

for each point, is modularized and the spatial prediction is 

performed by learning the correlation between modules by 

update algorithm of the SOM. 

Simulation data in this research are; wind speed and wind 

direction of the target point, called Choshi weather 

observatory, and 11 points around the target site. Fig. 2 

shows the surrounding sits with observation data and the 

Choshi site with no available data which is used for 

projection.  

 

 
Fig. 2. Spatial projection. 

 

III. SIMULATION METHODS 

A. Modular Network Self-Organization Map (mnSOM) 

The mnSOM is obtained by replacing each unit of 

Self-Organization Map (SOM) of Kohonen to modularized 

unit, such as ANN. In the case of using a multilayer 

perceptron which is one of the ANN as modular, it is known 

that the map is designed to have the properties near modular 

to each other by learning the different input and output 

correlation at each modules of mnSOM. The learned modular 

with given characteristic data are formed and show an 

intermediate output correlations. On the other hand, by 

forming interpolation, it is possible to learn the 

characteristics of modular which their data is not given 

[6]-[8]. 

Fig. 3 shows the construction and data flow of mnSOM. 

 

 
Fig. 3. Modular network SOM (mnSOM). 

 

The basic learning algorithm of mnSOM is as follows. 

First, it provides an input to all modules, leading to errors 

for each module from the output and the teacher signal. 

Now, there are M system groups with x , y  as input and 

output vectors, and their input / output relations are modeled 
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as  ify x  ( 1,2,...,i M ). The purpose of mnSOM is to 

let the module learn the input / output relation  if   of each 

system based on the input / output dataset iD , which is 

shown as following equation (1), by making the similarity 

between models into a self-organizing map. 

  ijijiD yx , （ Mi ,...,2,1 ）               (1) 

First, one set of iD  can be selected randomly from the 

data group MDD ,...,1  of input and output, and also randomly 

select the input and output data   iijij Dyx ,  belonging to 

iD . The ijx  is an input of the network, given to all modules. 

The ijy  is the teacher (supervisor) signal. If 
)(k

ijz  is the 

output of the k-th module for the input ijx , then the square 

error of the module is given by the following equation (2). 
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Next, the winner module is determined based on the error 

of each module. 

If )(k
iE  shown in equation (3) is the total error of the k-th 

module for all data belonging to iD , the module which 

minimizes the )(k
iE  is the winner module as shown in 

equation (4). 
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In the learning of mnSOM, actually the )(k
iE  is replaced 

with the average error 
)(k

iE  of time to enable online learning 

and to speed up the decision of the winner. The average error 
)(k

iE  time is shown in equation (5), where   is a positive 

number close to zero. 
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Learning is using the back-propagation method (BP), to 

update the connection weights of the winner and the 

neighboring modules. The weight 
)(k

w  of the k-th module is 

updated by equation (6). 
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where,  lt,  is a coefficient gives the strength of the BP 

learning, corresponds to the neighborhood function in SOM. 

l  is the distance of winner modules and learnt modules. It 

should be noted that  lt,  is monotonically decreasing by l . 

Therefore winner module learns the best, and distanced 

module from winner one learns less. In addition,  lt,  is a 

monotonically decreasing by t , therefore neighborhood 

function become less from the viewpoint of number of 

learning progress. 

 lt,  in this learning is shown in equation (7).  t  is a 

monotonically decreasing function decreasing with time t . 
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Using a general mnSOM, it is impossible to expect the 

spatial interpolation because module will show similar input 

and output characteristics which are clustered by SOM 

learning with temporal projection progress. The reason why a 

general mnSOM cannot be used is because in general 

mnSOM the initial weights are set randomly to the ANN in a 

module and the one which has the closest characteristic will 

be the winner.  

In the past research of the authors of this paper, it is 

confirmed that pre-training with the winner module which is 

the location of selected data group directly is effective for 

learning in which no spatial information is lost. We call this 

method “Projection-mnSOM (hereafter P-mnSOM)”. 

In P-mnSOM, the input and output data and learning 

algorithm are almost similar to general mnSOM. The 

difference between general mnSOM and P-mnSOM is on 

their determination method of winner module. 

In general mnSOM, winner module is the one which has 

minimum error or average error in all modules. However in 

P-mnSOM, winner module location is the location of 

selected data group directly. 

The decision algorithm of winner module (equation (4) in 

mnSOM) is replaced with following equation (8). Actually 

this is the difference between general mnSOM and 

P-mnSOM. 

  iDk iwinner                            (8) 

By the replacement, we changed the module of minimum 

error to the module which is corresponded to the observatory 

location of selected input / output data. Furthermore, the 

module of observatory location has the characteristic of input 

/ output data of own location and the winner module is 

determined regardless of initial weights set in ANN of a 

module.  

After pre-training, we do the same learning process similar 

to general mnSOM. As the weights among neurons in ANN 

of module has the characteristic of own spatial location, the 

winner module is almost own observatory location which is 

decided by decision algorithm in general mnSOM. Therefore, 

the relation between module and observatory is kept. 

B. Grid-Style mnSOM 

In P-mnSOM, each observatory is mapped as a module in 

mnSOM. In this study, we integrated the entire actual 

geographical map into mnSOM so that we can predict more 

detail points between observation sites. By unify mnSOM 

and geographical map, the wind speed projection which 

location is not observatory becomes possible. 

In the other word, the location of observatory is fit into the 

mnSOM which is composed of modules arranged on the grid. 

Learning of mnSOM is performed for whole modules, 
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applicable to observatory and no observatory, the wind speed 

projection of the location which is not observatory (unknown 

data) becomes possible. 

The concept of the simulation method applied unified 

mnSOM is shown in Fig. 4. 

C. Data Construction 

The purpose of this research is to project the wind speed of 

an arbitrary location by using the wind conditions in certain 

(surrounded) regions. Therefore, the data for learning 

mnSOM is wind speed and wind direction as input and output. 

Since it is important to use the spatial characteristics as input 

data and the teacher signal as output data, wind speed )(tv  

and wind direction   (angle) are taken into account. In order 

to handle the input and output data to wind speed and wind 

direction only by wind speed, the wind speed vector is 

divided to north-south and east-west elements based on the 

wind direction. As north wind direction is taken as 0 angle, 

the wind speeds of north-south direction and east-west 

direction can be presented by the following Fig. 5. 

 

 
Fig. 4. Grid-style mnSOM. 

 

 
Fig. 5. Restructure of wind speed and direction. 

 

Furthermore, the input data and teacher signal are 

translated to vectors by the reconstructed time delay 

coordinate system, based on deterministic chaos concept, for 

learning the dynamics of wind speed. The x  as input vector 

is shown in equation (9) and the y  as output vector is shown 

in equation (10). In these equation, m  is dimensions,   is 

time delay in reconstructed dimension and s  is steps of 

projection. (The unit of   is link to steps of projection. In the 

study, it is hour.) 

            1,1,...,,  mtvmtvtvtv EWNSEWNSx   (9) 

           smtvsmtvstvstv EWNSEWNS   1,1,...,,y

 (10) 

IV. SIMULATION 

For this research, a simulator is created which can simulate 

all necessary calculations including projection of wind speed 

as shown in Fig. 6. 

We project the wind speed of Choshi site using the wind 

speed and wind direction data of Choshi (a) and 

11surrounded points from (b) to (l) as shown in Table I. 

In this simulation, there are 11 observation sites inside the 

grid, only the weather data of closer 3 sites, Yokoshiba-hikari, 

Katori and Kashima is used. Then temporal and spatial 

projection of one hour ahead for Choshi is performed. 

 

 
Fig. 6. Developed simulator. 

 
TABLE I: OBSERVATORIES (CHOSHI AND THE NEAR SITES) 

  

 North 

latitude 

[degree] 

East 

longitude 

[degree] 

Distance 

from 

Target 

[km] 

Direction 

(*) 

[degree] 

a) Choshi 35.738 140.857 - - 

b) Yokoshiba-hikari 35.657 140.480 35.255 255.291 

c) Abiko 35.863 140.110 68.864 281.876 

d) Katori 35.858 140.502 34.725 292.728 

e) Sakura 35.728 140.212 58.295 269.094 

f) Kashima 35.963 140.622 32.817 319.818 

g) Narita 35.763 140.385 42.733 273.872 

h) Ryugasaki 35.890 140.212 60.634 286.393 

i) Hokota 36.168 140.527 56.352 328.246 

j) Tsuchiura 36.103 140.220 70.346 305.468 

k) Tsukuba 36.057 140.125 74.954 298.493 

l) Shigehara 35.417 140.310 61.070 234.348 

(*) North is 0 degree, East is 90 degrees, South is 180 degrees, and West is 270 degrees. 

 

The parameters of the simulation which are determined by 

trial-and-error are as follows:  

•  Dimensions :  2m  

•  Time Delay:  1  

•  ANN Neurons : Input 4 – Hidden 8 – Output 4 

•  Learning Rate : 0.3 

•  Length of using data:  4320L  

•  Steps of projection:  1s  

The number of hidden neurons and   are important 

parameters for this simulation because of their impact on 

network construction and leading the model toward proper 

results. There are some methods for obtaining these 

parameters such as rule of thumbs, etc, however there is no 

general solution for this problem. In this study, based on the 

authors experience and many reported articles, a trial and 

error scheme is used as it proved to be more effective for 

determination of appropriate number of hidden neurons and 

 . 
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Regarding the determination of hidden neurons, it is an art 

rather than mathematics. When the number of hidden 

neurons is small, the correlation of the output and input 

cannot be studied well and the error increase. Moreover, 

when the number of hidden neurons is more than the 

necessity, even an irrelevant noise is studied to the 

correlation of both, and therefore the error grows moreover in 

this case. Therefore, the selection of the hidden neurons is 

done by add a small number and then gradually increases the 

number and calculate the error until it reaches to the lowest 

error. In this study we started from 1 to 20 neurons, as a result 

we obtained the lowest error when the number of hidden 

neurons was 8.  

Similarly, regarding the determination of la  , we 

confirmed the error while changing the number of   from 1 

to 12, and the best error was obtained when the number was 1. 

We think the cause is correlation of the prediction step.  

Finally, the simulations are evaluated based on the 

comparison of results found for projection of Choshi with the 

data of Choshi directly, and the results of projection of 

Choshi with the data from 3 near observatory points. 

 
TABLE II: PROJECTION ERROR BY P-MNSOM AND GRID-STYLE MNSOM 

  
RMS 

[%] 

Absolute Average 

Error [m/s] 

P-mnSOM 1.932 1.434 

Grid-Style mnSOM 1.622 1.142 

 

A. Projection with both P-mnSOM and Grid-Style 

mnSOM 

First, we compare the projection results determined by 

P-mnSOM and Grid-Style mnSOM in order to comfirm that 

Grid-Style mnSOM has accuracy of projection similar to 

P-mnSOM. In P-mnSOM, the number of modules for 

learning is 11 corresponding to observation sites. And in 

Grid-Style mnSOM, the number of modules is 16 (4 × 4) into 

which divided the area including 11 observation sites. The 

other parameters of simulation are same value. 

The error of wind speed projection of Choshi with 3 area’s 

weather data is evaluated using the RMS(Root Mean Square) 

error and Absolute Average error shown in Table II. The 

results are plotted in Fig. 7. The error of P-mnSOM and 

Grid-Style mnSOM is almost same. 

 

 
Fig. 7. Results of projection of P-mnSOM and grid-style mnSOM. 

 

B. Projection with Changing the Grid Size 

Second, we project wind speed by using the Grid-Style 

mnSOM by changing the grid size from 16 (4 × 4) to 100 (10 

× 10), and the other parameters of simulation are same value. 

The result error of projection is shown in Table III. The better 

results of top 3 are shown in Fig. 8. As the grid size gets 

bigger, the result error is increasing. We considered that the 

learning became difficult by making the network of mnSOM 

more complicated. 
 

TABLE III: PROJECTION ERROR WITH GRID SIZE 

Grid Size 

(Count of Module) 

RMS 

[%] 

Absolute Average 

Error [m/s] 

16 Modules 1.622 1.142 

25 Modules 1.700 1.216 

36 Modules 1.711 1.247 

49 Modules 1.970 1.494 

64 Modules 1.813 1.408 

81 Modules 2.061 1.558 

100 Modules 2.151 1.648 

 

 
Fig. 8. Results of projection by changing grid size. 

 

TABLE IV: PROJECTION ERROR WITH GRID SIZE AND LEARNING COUNT 

Grid Size 

(Count of Module) 

Learning 

Count 

RMS 

[%] 

Absolute Average 

Error [m/s] 

16 Modules 10000 1.622 1.142 

25 Modules 15625 1.630 1.191 

36 Modules 22500 1.432 1.033 

49 Modules 30625 1.373 0.963 

64 Modules 40000 1.500 1.117 

81 Modules 50625 1.315 0.918 

100 Modules 62500 1.934 1.524 

 

 
Fig. 9. Results of Projection with Fitting the Learning Count. 

 

A. Projection with Fitting the Learning Count to Grid Size 

Finally, we project wind speed by changing the learning 

count to fit to grid size. By the result of simulation by 

changing the grid size only, we found that more errors 

resulted in more module. So we adjusted the learning count to 

be the same for each module. 

The result error of projection is shown in Table IV, and the 

main results of projection are shown in Fig. 9. The best 

projection result is when the grid size is 49 or 81 modules. 

And by adjusting the learning count, even if the grid size 
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changes, the projection error does not change much. 
 

V. CONCLUSION AND REMARKS 

Wind power generation is an effective source for solution 

of environmental problems, and it is in progress in many 

parts of the world. For an island country like Japan, it is 

expected to obtain a stable wind power generation in 

off-shore rather than on-shore. It is important to choose a 

right place with high wind speed since it is directly related to 

profitability. However, comparing with the on-shore, the 

off-shore sites have some problems regarding the technical 

and cost which need to be investigated carefully. 

Therefore, the purpose of this research was to develop an 

approach to project the unknown wind speed of site, where is 

distant from observation points, more detailed and more 

precise based on the observation of weather information 

around the target off-shore site. By the Grid-Style mnSOM 

developed in this study, it became possible to reduce the risk 

related to prior weather research in the introduction point 

examination of off-shore wind power generation more. 

In this research, we further develop P-mnSOM which had 

already confirmed its effectiveness. And the projection of 

more detailed and more precise was examined successfully 

by arranging the modules in Grid-Style. 

Since we don’t have the weather data of off-shore site, in 

this research, we used the weather data of Choshi and 3 near 

observatory points to project the wind conditions for Choshi 

and evaluated for errors by comparing the actual 

observations data. 

First, we compared the projection results which were 

determined by P-mnSOM and Grid-Style mnSOM. The 

results of Grid-Style mnSOM is almost as same as the one of 

P-mnSOM. It can be stated that Grid-Style mnSOM is major 

projection technique as P-mnSOM, that is for actual 

off-shore projections can successfully project the wind speed 

of off-shore from the observation point of the on-shore. 

Furthermore Grid-Style mnSOM is able to project the wind 

speed more detail point than P-mnSOM. So it is considered to 

be effective for predicting one specific point as in the 

offshore case. 

Next, we confirmed the relationship of projection error 

with grid size (it is the same as module count). With module 

count is near to the number of P-mnSOM case, the error is not 

so different. But module count is increased, the projection 

error is higher. We considered the reason the relationship that 

learning count per each module is decreased because module 

count is increased and learning count is not changed. 

So ultimately, we confirmed the changes in projection 

errors when learning count is fit to grid size. the learning 

count was determined by assuming that the number of 

learning per a module is 625. The projection error was 

decreased in each grid size, so we confirmed that we can 

make further detailed prediction by dividing the grid finely. 

In future actions, we will project the wind condition of an 

off-shore area with this method. Next, by projection the wind 

condition in a certain off-shore area, we will identify the best 

point suitable for wind power generation in that off-shore 

area. 
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