
  

 

Abstract—This paper presents a novel approach to optimizing 

rural electrical power transmission network. The primary 

objective of this project is to determine an optimal (more 

economical) network configuration for a case study where large 

portions of network assets are approaching the end of their life 

cycle. Therefore, this is the most opportune time to redesign, and 

implement economically beneficial distribution alternatives such 

as microgrids and standalone power systems and, to evaluate the 

economic benefits of a combination of distribution alternatives. 

The latter alongside multiple microgrids have often been 

overlooked by past studies. Using Minimum Spanning Trees 

(MSTs) and clustering algorithms, the ideal location of 

microgridsand combination of distribution alternatives can be 

investigated. The results obtained from this study suggest that 

implementing microgrids and standalone power systems, 

drastically reduce the total cost of the network when compared 

to anoverhead transmission MST network. Furthermore, a 

combination of an overhead network with microgrids and 

standalone power systems resulted in the most economical 

network configurations. 

 
Index Terms—Distribution network, K-means, microgrids, 

standalone power systems. 

 

I. INTRODUCTION 

Optimizing network performance and reliability at the 

lowest possible investment cost have become challenges that 

current electrical utility companies attempt to tackle [1]. In 

areas where users are spatially isolated, there is an increased 

investment required to connect them to a network and this 

results in decreased returns for the network operators [2]. 

Optimization of the network by implementing newer, more 

reliable and cost effective power generation and/or 

distribution technologies, is a potential solution for the 

aforementioned problem. 

As renewable technologies are sustainable, supply power 

locally, and decrease operation and transmission lines costs 

[3], electrical utility companies have strived to integrate these 

with power distribution alternatives. One such alternative is 

microgrids, which both improve the reliability of the network 
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and are economically beneficial [4], [5]. As past research has 

been focused on the implementation and control of microgrids, 

less emphasis has been placed on the development of an 

optimal distribution network formation algorithm involving 

microgrids. Additionally, multiple smaller microgrids in a 

single region or a combination of power distribution 

alternatives have not been investigated.  

A method to achieve multiple smaller microgrids is through 

clustering algorithms, which amasses points into clusters 

based on their spatial arrangement. Clustering algorithms 

were utilized in wireless sensor networks [6] and optimal 

location planning of social services facilities such as schools 

and hospitals [7], [8]. Essentially, this can also be applied to 

microgrids, as the location of the distributed energy 

generators (DEG) and resources (DER) is critical to impact 

the maximum number of users.  

This paper focuses on a case study of an electrical network 

located in Kondinin Shire, Western Australia. As part of the 

Western Australian network underwent “significant 

expansion 40 years ago, and up to 80% of the installed 

distribution overhead network will be subjected to renewal in 

the next 20 years” [2], this presents the opportunity to 

potentially upgrade and/or redesign the distribution network.  

The main objective of this study is to determine an 

economically beneficial network configuration through the 

utilization of clustering algorithms-based microgrids. This 

entails a comparison of the power distribution alternatives 

such as centralized distribution networks (SPL), standalone 

power systems (SPS), microgrids (MG) and an amalgamation 

of all three. A Minimum Spanning Tree will be employed in 

SPL and MG clusters to simulate the possible transmission 

lines. 

 

II. CLUSTERING ALGORITHMS 

Clustering algorithms can be categorized as hierarchical, 

partitioning, grid based, density based or model based 

algorithms [7]. Clustering involves the distribution of a set of 

objects into different groups. During this case study, the 

following categories of algorithms were considered: 

hierarchical and partitioning. 

A. Hierarchical Clustering 

Hierarchical clustering algorithms can be formulated 

bottom-up (Agglomerative) and top-down (Divisive), and can 

proceed one of three ways; single-linkage cluster (shortest 

distance between clusters), complete-linkage cluster (greatest) 

and average-linkage cluster (average) [9].  Agglomerative 
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hierarchical clustering (AHC) assigns a cluster to each object 

and proceeds to combine the closest pairs of clusters. The 

algorithm recalculates the distance between the clusters (new 

and old clusters), continuing until all the objects are in one 

cluster [10], [11]. Divisive hierarchical clustering (DHC) 

proceeds in reverse by splitting the furthest clusters, 

continuing until all objects are not in clusters. 

Traditionally, DHC is unused due to the expensive 

computational power required [12], issues with the relative 

order of the separation of the subgraphs and lack of indication 

of “when to stop splitting” [13]. Therefore, AHC was 

employed during this study. 

B. Partitioning Clustering 

K-means (KM) is an unsupervised learning algorithm [14] 

and a basic partition clustering technique from which, 

K-medoids (KMD) and Fuzzy K-means have been derived 

[15]. K-means is an algorithm which initially selects K 

number of centroids (center/mean location of clusters) from 

the dataset and assigns the remaining objects to the closest 

center. The new average/mean location of the cluster is 

calculated and the algorithm is repeated until no further 

change is observed in the centroid placement [16].  

K-medoids is a variant of K-means, which only considers 

objects from the dataset as centroids in lieu of the mean 

location in a cluster. Fuzzy K-means employs a probability 

model which assigns each point with a different “degree of 

belonging” to a cluster, such that all objects affect the 

calculation of new centroids [17]. During this study, only the 

KM and KMD algorithms were considered.  

 

III. MICROGRIDS 

Dating back to 1882, microgrids are defined as smaller 

distribution networks consisting of DER and DEG for power 

storage and generation [5], [18]. Microgrids can be 

categorized as islanded and grid-connected [19]. Compared 

to islanded microgrids, grid-connected microgrids 

remainconstantly connected to the main distribution network 

and employ the islanded microgrids format (disconnected 

from grid network)as emergency power sources [20]. Often, 

grid-connected microgrids are used in closed communities 

such as university campuses where electrical power is 

concrete to the business’s operations [21] whilst islanded 

microgrids are employed in remote and isolated locations [19]. 

As the primary objective of this study was to reduce the 

distribution cost in rural distribution networks, therefore the 

islanded microgrid format was employed. Additionally, a 

reference microgrid architecture/topology was defined for 

cost estimations and comparison of the different distribution 

alternatives. 

 

IV. OPTIMAL NETWORK APPROACH(ES) 

Prior to commencing any analysis, the case study area had 

to be partitioned into four sections to preventoverlaps of the 

microgrid clusters formed with the pre-existing three phase 

backbone (TPL) of the network. To adequately compare the 

power distribution alternatives available, networks using each 

of the alternatives (SPL, SPS and MG) were generated for 

each partitioned section. In the MG network analysis, each of 

clustering algorithms was tested separately. For the 

partitioning clustering algorithms (KM and KMD), the value 

of K ranged from 1 to N-1
1
 with N being the number of users 

in a partitioned section. The AHC algorithm restricted the 

number of possible clusters to a subset of {1, N-1}. If a cluster 

contained one user, it was redefined as a SPS instead. 

SPL and SPS networks involved connecting all users to a 

centralized distribution network or separate standalone power 

systems respectively. The SPS cost was associated with the 

distribution transformers required if the user was connected to 

a SPL network. A maximum distribution transformer rating of 

50 kVA was implemented due to the equipment prices 

available. Therefore, if the SPS rating was greater than 50 

kVA, the user was connected using only SPL or MG. For both 

MG and SPL, the transmission cost to connect all users was 

determined through a Minimum Spanning Tree (MST).  

To obtain the optimal network architecture (i.e. network 

with the lowest total cost), two approaches were designed. 

Noting that the cost of a viable MG cluster (transmission and 

generation equipment) is less than the cost of implementing 

the cluster users as SPL or SPS and that all viable clusters 

with only one user were defined as SPS, the following 

methods were employed. 

A. Approach #1 

Using a distance threshold, approach #1 restricted the 

possible SPL users to those located adjacent to the TPL 

(within a distance margin/threshold). This resulted in users 

located distant to the TPL with a SPS rating greater than 50 

kVA, being identified as MG nodes only. The remaining users 

located far from the TPL were assigned to a MG cluster or as 

SPS. Fig. 1 represents a flowchart of approach #1. 
 

 
Fig. 1. Flowchart of approach #1. 

 
1N-1 is the maximum number of clusters as with N-1, this would still 

involve the clustering of two points whilst the rest are standalone. 
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B. Approach #2 

In approach #2, all viable MG clusters were first identified 

followed by an assignment of the remaining points as SPL or 

SPS. No distance threshold was implemented. Fig. 2 outlines 

the approach #2 procedure.  
 

 
Fig. 2. Flowchart of approach #2. 

 

V. RESULTS AND ANALYSIS 

Fig. 3 represents the case study area and spatial 

arrangement of the TPL and users. The size of the area is 70 

km by 45 km and contains 208 users. Using the TPL (bold line) 

as the primary boundary, four sections (as indicated by the red 

lines) of varying sizes were obtained. 
 

 
Fig. 3. Case study partitioning and spatial arrangement of users. 

A. Optimal Network 

Fig. 4-Fig. 7 represent the North West, North East, South 

West and South East sections of the optimal network 

respectively. The North-West network (Fig. 4) was obtained 

by using approach #2 and AHC. In this section, a large 

proportion of MG clusters contained two users, five SPL 

viable nodes were present and the remaining users were 

suitable as SPS. Implementing a combination of SPL, SPS 

and MG resulted in the most economical solution. The 

network costs of the SPL (MST), SPS only and MG (includes 

SPS) network were 337.5%, 211.3% and180.9% of the 

optimal network cost. 
 

 
Fig. 4. North West section of the optimal network. 

 

As approach #1 and KMD were employed to determine the 

optimal network layout in the North-East partition (Fig. 5), 

the viable SPL could only be observed adjacent to the TPL. 

MG clusters of various sizes could be found close (further 

than the distance threshold) to the TPL. The SPL (MST) 

network costed 331% of the optimal network, 232.7% for the 

SPS only and 128.7% for the MG network. The largest 

percentage difference between an SPS only and optimal 

network occurred in this section. 
 

 
Fig. 5. North East section of the optimal network. 

 

The optimal network of the South West partition (Fig. 6) 

primarily contained MG clusters with two users, and 11 SPL 
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viable locations.  The remaining points unsuitable for MG or 

SPL were identified as SPS nodes. This was obtained through 

approach #2 and KM. Relative to the cost of the optimal 

network, which implements MG, SPS and SPL, the SPL 

(MST), SPS only and MG networks costed respectively 

371.4%, 217.3% and 186.2% (largest for all sections)of the 

optimal network.  
 

 
Fig. 6. South West section of the optimal network. 

 

The South-East partition (Fig. 7) was the smallest partition 

and had the lowest user count. Employing each approach and 

clustering algorithm combination, the cost and topology of the 

optimal networks were nearly identical. Though a network 

solution was recurrent, this did result in the lowest possible 

cost. Using approach #2 and KMD to find the optimal 

solution, the SPL (MST) network is 487.2% (largest out of all 

partitions), SPS only is 161.5% and 138.5%, for the MG 

network, of the optimal solution cost. 
 

 
Fig. 7. South East section of the optimal network. 

 

B. Clustering Algorithms 

Out of the four partitioned sections, networks obtained 

through KMD costed, on average, less than the other 

clustering algorithms. However, the results suggest that an 

ideal/ all-purpose clustering algorithm, which could 

consistentlyobtain more cost-effective clusters, was not 

amongst AHC, KM and KMD (refer to Table I and Table II). 

Therefore, further research is required to determine an ideal 

clustering algorithm. 

TABLE I: COMPARISON OF OPTIMAL NETWORK PERCENTAGE COST 

DIFFERENCES BASED ON CLUSTERING ALGORITHM USED FOR APPROACH #1 

Clustering algorithm AHC KM KMD 

North West section 

AHC - -3.28% -4.13% 

KM 3.17% - -0.83% 

KMD 3.97% 0.82% - 

North East section 

AHC - 9.17% 12.48% 

KM -10.10% - 3.64% 

KMD -14.27% -3.78% - 

South West section 

AHC - -33.50% -39.29% 

KM 25.09% - -4.34% 

KMD 28.21% 4.16% - 

South East section 

AHC - 4.97% 4.97% 

KM -5.23% - 0.00% 

KMD -5.23% 0.00% - 

 
TABLE II: COMPARISON OF OPTIMAL NETWORK PERCENTAGE COST 

DIFFERENCES BASED ON CLUSTERING ALGORITHM USED FOR APPROACH #2 

Clustering algorithm AHC KM KMD 

North West section 

AHC - -1.35% -3.38% 

KM 1.34% - -2.00% 

KMD 3.27% 1.96% - 

North East section 

AHC - -4.35% 1.19% 

KM 4.17% - 5.30% 

KMD -1.20% -5.60% - 

South West section 

AHC - 2.76% 1.99% 

KM -1.82% - -0.50% 

KMD -2.03% 0.78% - 

South East section 

AHC - 4.97% 6.02% 

KM -5.23% - 1.11% 

KMD -6.41% -1.12% - 

 

C. Power Transmission Alternatives 

A comparison of the lowest network cost for different 

distribution alternatives (Table III), suggests a positive 

relationship between the implementation of SPS/MG and SPL. 

The cost of the SPS and MG network were consistently lower 

than the cost of the SPL (MST) network. Additionally, 

implementing MG further optimized the SPS network by 

clustering certain users. Hence, these results suggest that the 

implementation of power distribution alternatives other than 

SPL, reduces the investment required.  

Furthermore, implementing a combination of all 

distribution alternatives further optimized the network, which 

was suggested by the percentage cost difference between the 

MG solutions (which employ clusters and SPS) and the 

optimal network. Nonetheless as the equipment prices and 

transmission costs were estimates, further research is required 

to provide more accurate analysis of the distribution 

alternatives. 
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TABLE III: COMPARISON OF DISTRIBUTION ALTERNATIVES RELATIVE TO 

OPTIMAL NETWORK 

Optimal section 

network 

Distribution alternatives 

Optimal SPL SPS MG 

North West 100% 337.5% 169.9% 116.4% 

North East 100% 331.0% 232.7% 128.7% 

South West 100% 371.4% 217.3% 186.2% 

South East 100% 487.2% 161.5% 138.5% 

 

VI. CONCLUSION AND FUTURE WORK 

The introduction of microgrids has been seen to improve 

the cost and reliability of power distribution network and has 

altered the stigma associated with power distributions [3]. 

Steering away from the traditional overhead network and 

implementing microgrids and/or standalone power systems, 

might potentially provide new alleyways for development. 

Particularly, the results from this study has shown that an 

implementation of different distribution alternatives might be 

more economically beneficial for the network operators. The 

limitations of this study were the case study size and 

consequently the partitioned sections, the cost estimates (e.g. 

cost for SPS ratings greater than 50 kVA) and the adaptability 

of the algorithm to larger regions.  

Though the results do suggest that the implementation of 

standalone power systems and microgrids may improve the 

cost efficiency, further work and research are required to 

improve the cost estimates (equipment and transmission cost), 

adaptability of the algorithm, and clustering algorithms 

employed. 

ACKNOWLEDGMENT 

D. M. Li Kwok Cheong would like to express his sincere 

gratitude to T. Fernando, H. Iu and M. Reynolds for their 

continuous guidance and support throughout this study, and J. 

Fletcher for his countless advice and indispensable assistance 

regarding any issues, and the dataset kindly provided by J. 

Fletcher. 

REFERENCES 

[1] M. Li, C. Yanyan, Y. Yingjie, Z. Chunlei, Q. Zhengmei, L. Wei, C. 

Xuefeng and Y. Haiming, "Distribution network optimize planning 

based on operation efficiency and benefits," in Proc. 2016 China 

International Conference on Electricity Distribution (CICED), Xi'an, 

2016.  

[2] J. Fletcher, T. Fernando, H. Iu and M. Reynolds, "A case study on 

optimizing an electrical distribution network using a genetic 

algorithm," in Proc. 2015 IEEE 24th International Symposium on 

Industrial Electronics (ISIE), Buzios, 2015. 

[3] M. Ding, Y. Zhang, and M. Mao, "Key technologies for microgrids-a 

review," in Proc. 2009 International Conference on Sustainable 

Power Generation and Supply, 2009. 

[4] Y. Zhou and C. N.-M. Ho, "A review on Microgrid architectures and 

control methods," in Proc. 2016 IEEE 8th International Power 

Electronics and Motion Control Conference (IPEMC-ECCE Asia), 

Hefei, 2016. 

[5] S. N. Bhaskara and B. H. Chowdhury, "Microgrids — A review of 

modeling, control, protection, simulation and future potential," in Proc. 

2012 IEEE Power and Energy Society General Meeting, 2012. 

[6] F. Belabed and R. Bouallegue, "An optimized weight-based clustering 

algorithm in wireless sensor networks," in Proc. 2016 International 

Wireless Communications and Mobile Computing Conference 

(IWCMC), 2016. 

[7] H. Salman, L. Ibrahim, and Z. Fayed, "Enhancing Clustering technique 

to plan social infrastructure services," in Proc. 2013 4th International 

Conference on Intelligent Systems, Modelling and Simulation, 

Bangkok, 2013. 

[8] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "An 

application-specific protocol architecture for wireless microsensor 

network," IEEE Transactions on Wireless Communications, vol. 1, no. 

4, pp. 660 - 670, October 2002. 

[9] S. Rana and R. Garg, "Application of hierarchical clustering algorithm 

to evaluate students performance of an institute," in Proc. 2016 Second 

International Conference on Computational Intelligence & 

Communication Technology, Ghaziabad, 2016. 

[10] T. K. Jain, D. S. Saini, and S. V. Bhooshan, "Performance analysis of 

hierarchical agglomerative clustering in a wireless sensor network 

using quantitative data," in Proc. 2014 International Conference on 

Information Systems and Computer Networks (ISCON), Mathura, 

2014. 

[11] M. Scalzo and S. Velipasalar, "Agglomerative clustering for feature 

point grouping," in Proc. 2014 IEEE International Conference on 

Image Processing (ICIP), Paris, 2014. 

[12] R. Xu and D. Wunsch, "Survey of clustering algorithms," IEEE 

Transactions on Neural Networks, vol. 16, no. 3, pp. 645-678, 2005. 

[13] S. E. Schaeffer, "Graph clustering," Computer Science Review, vol. 1, 

no. 1, pp. 27-64, 2007. 

[14] G. Singh, J. Kaur, and Y. Mulge, "Performance evaluation of enhanced 

hierarchical and partitioning based clustering algorithm (EPBCA) in 

data mining," in Proc. 2015 International Conference on Applied and 

Theoretical Computing and Communication Technology (ICATCCT), 

Davangere, 2015. 

[15] S. Baadel, F. Thabtah, and J. Lu, "Overlapping clustering: A review," 

in Proc. 2016 SAI Computing Conference (SAI), London, 2016. 

[16] P. Chauhan and M. Shukla, "A review on outlier detection techniques 

on data stream by using different approaches of K-Means algorithm," 

in Proc. 2015 International Conference on Advances in Computer 

Engineering and Applications (ICACEA), Ghaziabad, 2015. 

[17] E. Hot and V. Popović-Bugarin, "Soil data clustering by using 

K-means and fuzzy K-means algorithm," in Proc. 2015 23rd 

Telecommunications Forum Telfor (TELFOR), Belgrade, 2015. 

[18] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, "State of the art in 

research on microgrids: A review," IEEE Access, vol. 3, pp. 890-925, 

2015. 

[19] J. Clavier, M. Ross, and G. Joos, "Dispatch techniques for Canadian 

remote communities with renewable sources," in Proc. 2013 IEEE 

Electrical Power & Energy Conference (EPEC), Halifax, 2013. 

[20] C. Marnay, S. Chatzivasileiadis, C. Abbey, R. Iravani, G. Joos, P. 

Lombardi, P. Mancarella, and J. V. Appen, "Microgrid evolution 

roadmap," in Proc. 2015 International Symposium on Smart Electric 

Distribution Systems and Technologies (EDST), Vienna, 2015. 

[21] R. M. González, T. A. J. V. Goch, M. F. Aslam, A. Blanch, and P. F. 

Ribeiro, "Microgrid design considerations for a smart-energy 

university campus," in Proc. 2014 IEEE PES Innovative Smart Grid 

Technologies Conference Europe (ISGT-Europe), 2014. 

  

 

D. M. Li Kwok Cheong was born in Moka, Mauritius, in 1994. He 

received the BSc in engineering science and applied mathematics/statistics 

in 2014, and the MPE in electrical and electronics engineering in 2016, 

both from the University of Western Australia, Perth, Australia.  

He was a student rail engineer during the summer 2015-16 and was an 

academic tutor at the University of Western Australia in 2016. His current 

interests lie in optimal power generation and distribution, and renewable 

energy.  

 

 

 

Journal of Clean Energy Technologies, Vol. 6, No. 3, May 2018

262


