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Abstract—The Jxw geothermal reservoir in the Dongli Lake 

area is an extensive, low temperature geothermal system hosted 

mainly by Mesoproterozoic dolomitic limestones. In order to 

study the flow paths and predict the recovery time and tracer 

concentration in the production well, a numerical method using 

Visual MODFLOW software were applied. For the most 

pessimistic case (longitudinal dispersivity equals to 383.5 m), the 

tracer will take more than a year to arrive at the production well, 

with concentration values outside of the detection limit. Results 

show that there is no direct connection between production and 

injection wells. 

 

Index Terms—Numerical model, tracer test, geothermal 

reservoir, recovery.  

 

I. INTRODUCTION 

In conventional geothermal development, tracer testing can 

provide information on the flow-paths between reinjection 

and production wells, helping to predict the danger and rate of 

cooling during long-term reinjection [1]. It has been widely 

used and proved to be an important tool in studying the impact 

of reinjection in the reservoir [2], [3].  

Most tracer test interpretations are only used in a 

qualitative manner to assess injector-producer connectivity 

without taking advantage of other information carried within a 

full tracer response curve [4]. To interpret the tracer testing 

quantitatively, a numerical method using Visual MODFLOW 

software were applied. 

This paper aims to model the flow patterns in the 

geothermal reservoir. A numerical model was built in order to 

demonstrate physical processes in the study area and predict 

the change of concentration in a long time period after trace 

injection. 

 

II. GENERAL INFORMATION OF THE JXW GEOTHERMAL 

RESERVOIR 

A. Geology and Hydrogeology 

The study field Wumishan geothermal reservoir (Jxw) is 
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located in Tianjin Binhai New District. It mostly consists of 

Mesoproterozoic dolomitic limestones [5] with high 

temperature and high production rates [6]. The fracture rate of 

this reservoir varies from 40% to 70% and in some wells the 

rate is up to 80 - 90% [7]. 

The heat source for the reservoir is presumably from lava 

flow of the upper mental and radioactive delay from granite 

(8~16 km depth). According to isotopic analysis, the origin of 

the water is meteoric from ancient times. The Quaternary and 

Tertiary formations consist of clay and sandstone, forming a 

good caprock of the geothermal reservoir. They are of low 

thermal conductivity and low permeability with thickness of 

280 to 320 m. The Cangdong fault is a major fault in this area 

which can conduct heat from the bottom of the reservoir to the 

shallow part by heat convection. Heat convection becomes 

weaker with distance far from the fault. 

Geothermal wells are mostly located near the Cangdong 

fault (Fig. 1). Until now 13 geothermal wells have been 

drilled into this reservoir. Average well production rates are 

in the range of 70–120 m
3
/h, with wellhead temperatures 

between 88 and 102℃ [8], [9]. However, no well completely 

penetrates the reservoir and its thickness is unknown. Drilling 

data shows that in the west of the Cangdong fault, the top 

depth of the reservoir varies from 1752 to 2016 m, with 

thickness of 480 to 1032 m. However, in the east of the fault, 

there is only one well penetrating this reservoir with top depth 

of 3581 m and thickness of 153 m (DL-51).  

Due to gradually increased production and development, 

the water level had been falling 6-9 m per year since 1997 and 

a regional cone of depression has formed [10]. Therefore, 

reinjection of the used geothermal water was started in 2001 

to maintain reservoir pressure and to prolong the lifetime of 

the production wells [5]. Injection provides an additional 

recharge to geothermal reservoirs; however, the water level 

has still dropped nearly 3 m per year since 2011 due to large 

scale development [11]. 

B. Tracer Testing 

In order to study the flow paths and predict the cooling of 

long term injection, tracer testing was performed. Ammonium 

Molybdate (Mo) was chosen as the tracer for this test. It is 

nontoxic at low concentrations and could be used safely in the 

aquifer. The natural concentration of the tracer was low 

(background concentration is around 0.5 µg/L) so it was 

assumed that the tracers introduced for this test could be 

followed for a reasonable distance and still be detected [12].  

On 17 December, 2015, total of 700 kg of Ammonium 

Molybdate (Mo) were injected into well DL-48B over a 

period of 2 hours. The injection flow rate was approximately 

100 m
3
/h. Throughout the subsequent 3 months, 8 production 
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wells were sampled every 2 hours (see Fig. 1). Only 1/6 of the 

samples were tested and analysed. If the tracer had been 

detected, the frequency of the analysis could be increased. 

No recovery was detected in the samples after 90 days of 

sampling which took place until March 18th, 2016. There are 

some assumptions. One is that the tracer needs longer time to 

arrive at the production wells. Another consideration is there 

is no direct flow from injection and production wells as the 

reservoir is highly fractured. 

 

 
Fig. 1. The scope and geological structures of the study area. 

 

III. METHODS 

MODFLOW is a FORTRAN program developed by the 

United States Geological Survey (USGS), which can simulate 

groundwater flow and levels under complex hydrogeological 

conditions with various hydrological processes and is widely 

used in regulatory situations [13]. 

The equation governing groundwater flow through 

saturated porous media in three dimensions is derived from 

Darcy‟s law and the continuity equation, and is given as [14]: 

( ) ( ) ( )xx yy zz s

h h h h
k k k w s

x x y y z z t

      
   

      
 

where „Kxx(m/d)‟, „Kyy(m/d)‟ and „Kzz(m/d)‟ are the hydraulic 

conductivities along the x, y, and z axes that are assumed to be 

parallel to the principal axes of the hydraulic conductivity 

tensor, „h(m)‟ is the hydraulic head, „W(1/d)‟ is the volumetric 

flux per unit volume representing sources and/or sinks of 

water, „SS(1/m)‟ is the specific storage of the material, „t(d)‟ is 

time. Here, Kxx, Kyy and Kzz are the functions of space (x, y, z) 

and W is a function of space and time (t). 

In this study, Visual MODFLOW Flex (2015.1) software 

has been used for simulating the groundwater dynamics. This 

version includes the simulation of saturated -unsaturated flow 

process, density dependent flow process, parameter 

optimization process and solute transport process [15]. A 

finite difference grid was used and MODFLOW 2000 was 

chosen as an engine to run a transient state numerical model 

from 26th August, 2013 to 26th August, 2015.  

1) MT3DMS: MT3DMS is a transport model for 

simulating advection, dispersion, and chemical reactions of 

contaminants in groundwater flow systems. This package was 

used to model the concentration of the observation wells after 

tracer injection [16]. 

2) PEST: An effective tool of automating parameter 

estimation, calibration and sensitivity analysis, and it allows 

you to run parameter estimation using results from both 

groundwater flow and contaminant transport simulations [17]. 

 

IV. RESULTS AND DISCUSSION 

A. Numerical Reservoir Modelling  

Considering most wells were distributed in the left part of 

Cangdong fault except well DL-51 and DL-51B, and the fault 

itself can be a natural boundary condition, a small area with 

intensive production and injection wells was chosen as the 

numerical model study area (Fig. 1). 

In the conceptual model, this study area was divided 

vertically into four layers based on borehole geology 

information and geological situations as mentioned before. 

Layer 1 is the Quaternary porous formation. Layer 2 includes 

Cenozoic Minghuazhen Group (Nm) and Guantao Group 

(Ng). Layer 3 is the Karstic-fracture geothermal reservoir, 

including Paleozoic Ordovician (O), Cambrian (∈). Layer 4 

which is the main study reservoir consists of Mesoproterozoic 

Jixian Wumishan Group (Jxw). One cross section is shown in 

Fig. 2, indicating these four reservoirs in the model. Based on 

the information of the deepest well with depth of 4040m in 

this area, the reservoir below 4000 m depth is poorly 

developed with pore and fissures. So the bottom boundary 

was considered as no-flow boundary.  
 

 
Fig. 2. Cross section of row 41. 

 

The flow direction is mainly from northwest to southeast 

according to initial water level contours and the inflow and 

outflow flux of each boundary can be calculated by Darcy's 

Law. The specified flux boundary was used with these fluxes 

in the model, and small adjustment was made during the 

process of calibration.  

Each layer was discretized horizontally into a grid of 

100×120 cells with cell height of 22.13m and cell width of 

31.78m. For more accurately simulate and calculate the water 

level, concentration and heat transfer with the injection well 

and production well, grid around well DL-48 and DL-48B 

was refined by two (Fig. 3).  

Layer 1: Q 

Layer 2: Nm+Ng 

Layer 3: O+∈ 

Layer 4: Jxw 
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Fig. 3. Grid of the numerical model area. 

 

B. Calibration 

The parameter estimation program PESTwas used to 

minimize errors between observed and simulated heads, 

which was also used to estimate the distribution of reservoir 

parameters. Pilot points were placed and fixed of these wells 

with the known Kx,y, which were obtained from pumping test 

data reported by the Tian [9] (Table I). Additional pilot points 

were then added scattering over the study area. Kx,y, Kz and Ss 

in layer 4 were constrained in the range of 0.1-10 m/d, 0.01-1 

m/d, 1e-7 to 1e-4 1/m, respectively. This resulted in 15 pilot 

points of 3 kinds of parameters to be calibrated. The spatial 

hydraulic conductivity and storativity fields were derived by 

interpolation among pilot points using kriging variograms 

[18]. 

 
TABLE I: THE HYDRAULIC CONDUCTIVITY OF FIXED PILOT POINTS FROM 

WELL TEST DATA 

Well 
Hydraulic 

conductivity（m/d） 
Well 

Hydraulic 

conductivity（m/d） 

DL-40B 2.85 DL-40 1.03 

DL-48 3.3 DL-34 0.85 

DL-19B 1.38 DL-44 0.77 

DL-48B 1.29 DL-44B 0.73 

 

 
Fig. 4. The fitting of the observed water levels and simulated water levels 

after PEST. 
 

Data on monthly groundwater levels of 4 monitoring wells 

from December 2013 to December 2015 were used for model 

calibration (no data during heating periods). After running 

PEST, we got the new distribution of parameters and they 

were applied to the new model. The range of Kx,y, Kz and Ss in 

layer 4 are mostly between 0.45-3.18 m/d, 0.05-0.33 m/d, 

2.09E-6 to 1.24E-5 m
-1

, respectively, which can better reflect 

the heterogeneity of the reservoir rather than the zonal 

approach. 

The final calibrated model produced reasonable agreement 

between the simulated and observed water levels at the 

calibration targets (Fig. 4). The absolute residual mean (ARM) 

was 2.94 m, while the root mean square error (RMSE) was 

3.84 m. For a model with area of 6.32 km
2
, with a standard 

error of the estimate of 0.57m, and correlation coefficient of 

0.77, was considered to be acceptable.  

C. Prediction of Tracer Concentration in Production Well 

MT3DMS numerical engine was used to estimate the 

recovery time and the tracer concentration in the production 

wells. For further modelling, it was assumed that tracer is 

conservative and no adsorption or desorption occurs in the 

reservoir, only convection and dispersion were considered. 

Hydraulic conductivity and storativity were deduced from 

the groundwater flow model. Total porosity was used to 

determine the chemical reaction coefficients and for 

calculating the average linear groundwater flow velocity [19]. 

The longitudinal dispersivity was set as 76.7 m, 230.1 m and 

383.5 m for three different simulation scenarios. The injection 

of tracer was set on the first day of injection with maximum 

dissolved concentration of 3×10
8
 µg/L. Results show that the 

tracer concentration was diluted very quickly and it moved 

very slowly (Table II). For the most pessimistic case (aL 

=383.5 m), it takes more than a year to arrive at the production 

well, with very small concentration which is out of the 

detection limit. Even at the end of 10 years, the concentration 

is still very low which is 0.00424 µg/L (Fig. 5). It means more 

than 10 years is needed to get recovery with the tracer testing. 

 
TABLE II: RECOVERY TIME AND CORRESPONDING CONCENTRATION OF 

PRODUCTION WELL  

Recovery time 

(years) 

Concentration of well DL-48 (µg/L) 

aL=76.7 m aL=230.1 m aL=383.5 m 

1.1 
  

1.68E-30 

2.1 
 

5.78E-29 3.60E-20 

5.3 4.96E-31 1.87E-13 1.74E-07 

9.7 6.05E-21 3.44E-07 4.24E-03 

 

 
Fig. 5. Tracer concentration  contours in reservoir after 10 years (aL =383.5 

m). 

 

V. CONCLUSIONS 

A numerical reservoir model was developed for the Dongli 

Lake geothermal area. It covers an area of 6.32 km
2
. An 

automatic parameter estimation tool (PEST) was used to 

minimize errors between observed and simulated heads and to 

estimate the distribution of reservoir parameters. The final 

calibrated model produced reasonable agreement between the 

simulated and observed water levels and was applied to 

predict the tracer concentration in the production well.  
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For the most pessimistic case of a longitudinal dispersivity 

of 383.5 m, the tracer will take more than a year to arrive at 

the production well, at very low with very small concentration, 

outside the detection limit. Results show that more than 10 

years is needed to get recovery with the tracer testing and 

there is no direct connection between production and 

injection wells. 
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