Selection of Energy Conservation Measures in Building Design Phases Considering Level of Details

Mina Choi, Gahee Kim, and Sean Hay Kim

Abstract—Building energy simulation plays an important role in the design process by predicting building performance. Yet practitioner designers often feel frustrated during preparing simulations, if they are not sure of design variables of an Energy Conservation Measures (ECMs) requiring accurate information about building and systems. To help practitioners, this paper provides a guideline to select ECMs, evaluation simulation tools, and detailed inputs for modeling of ECM at each building design phase as a format of Level of Detail (LOD).

Index Terms—Energy conservation measure, level of detail, energy simulation, building modeling guideline.

I. BACKGROUND AND OBJECTIVE

A global warming caused by an increasing use of fossil fuels begins to cause a serious environmental problem. Buildings take up to 30% of national energy consumption as in lighting, electrical equipment, heating ventilating and air conditioning (HVAC) system, and refrigeration systems. To effectively and efficiently regulate building energy use, it is important to select appropriate Energy Conservation Measures (ECMs) in building design process, rather than to add some actions after construction. In a design stage, building energy simulation is a useful tool to analyze the energy performance of a building model containing ECMs. Most energy simulations, however, require an expert level of system knowledge as well as simulation knowledge. It is, thus, hard for practitioners to actively employ building energy simulations during design process.

II. RESEARCH PROCESS

The aim of this study is to suggest a guideline that improves a use of energy simulations in each design phase. This study proposes what simulations are appropriate to capture features of ECMs and when Level of Detail (LOD) of each ECM starts being discussed and confirmed in the design process. Fig. 1 briefly elaborates how this study has proceeded.

Fig. 1. Process of the research.

First, we have examined major tasks at each design phase and formulated a basic framework of the design process based on interviews with design engineers. Next, we have explored literature and selected ECMs available in the market and then classified them into passive measures applied to a building and Mechanical Electronic and Plumbing (MEP) measures. In the third step, LOD of each ECM has been factorized and then analyzed in which design phase the LOD can be decided. Lastly major simulation tools that have a sufficient capability of evaluating ECMs in each design stage in terms of algorithm and usability have been investigated. The final artifact of this study is well described in Table I. Readers can find a useful information concerning a choice of ECMs, evaluation tools, and information availability of the ECM at each design phase.

III. BUILDING DESIGN PHASES

The building design process can be divided into phases in Table II. Also, it elaborates primary tasks of each design stage in order to identify when LOD starts to be discussed and confirmed.

IV. ENERGY CONSERVATION MEASURE (ECM)

Factors affecting energy consumption of a building can be divided into architecture, MEP, and controls as shown in Fig. 2. Architectural design can be classified into mass and layout plan, building envelope and materials. MEP design can be classified into heat source, air conditioning system, lighting system, renewable energy system, equipment. Controls mean an operation method of buildings and equipment such as scheduled ventilation and night purge that means ventilating. Most ECMs in this paper were selected based on [1]-[7].

Manuscript received November 18, 2016; revised May 27, 2017. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A2A01053559).

The authors are with School of Architecture, Seoul National University of Science and Technology, Seoul, South Korea (e-mail: chmina94@naver.com, rgkm9408@naver.com, seanhay.kim@seoultech.ac.kr).
<table>
<thead>
<tr>
<th>ECM</th>
<th>Simulation</th>
<th>Object</th>
<th>Sub-Object</th>
<th>LOD</th>
<th>LOD</th>
<th>Cons/ Ocup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shading and daylighting optimized by surroundings</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Mass</td>
<td>G&T</td>
<td>Placement, Area, Volume, Floor, Height, Orientation</td>
<td>Shade by surroundings, Reflection by surroundings, Solar radiation modulated by surroundings, Ground reflectance modulated by surroundings, Air temperature elevation by urban heat island effect</td>
<td>□</td>
</tr>
<tr>
<td>Building mass minimizing envelope area and taking advantage of solar gain and heat loss</td>
<td>EnergyPlus, eQUEST</td>
<td>Mass</td>
<td>G&T</td>
<td>Placement, Area, Volume, Floor, Height, Orientation</td>
<td>Shade by surroundings, Reflection by surroundings, Solar radiation modulated by surroundings, Ground reflectance modulated by surroundings, Air temperature elevation by urban heat island effect</td>
<td>□</td>
</tr>
<tr>
<td>Landscaping per orientation considering seasonal solar gain and shading</td>
<td>EnergyPlus, eQUEST</td>
<td>Site</td>
<td>Microclimate</td>
<td>Shade by surroundings, Reflection by surroundings, Solar radiation modulated by surroundings, Ground reflectance modulated by surroundings, Air temperature elevation by urban heat island effect</td>
<td>Shade by surroundings, Reflection by surroundings, Solar radiation modulated by surroundings, Ground reflectance modulated by surroundings, Air temperature elevation by urban heat island effect</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECM</th>
<th>Simulation</th>
<th>Object</th>
<th>Sub-Object</th>
<th>LOD</th>
<th>LOD</th>
<th>Cons/ Ocup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope finish considering solar absorption and reflectance</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Room</td>
<td>G&T</td>
<td>Placement, Area</td>
<td>Color, Reflectance</td>
<td>□</td>
</tr>
<tr>
<td>Window/Curtain wall/Sky light</td>
<td>G&T</td>
<td>Placement, Area</td>
<td>Color, Reflectance</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>Window/Curtain wall/Sky light</td>
<td>G&T</td>
<td>Placement, Area</td>
<td>Color, Reflectance</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>Frame/Mullion</td>
<td>Glass-Frame ratio</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade</td>
<td>Exterior horizontal/vertical shade</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool roof</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Roof</td>
<td>G&T</td>
<td>Placement, Area</td>
<td>Color, Reflectance</td>
<td>□</td>
</tr>
<tr>
<td>Window/Curtain wall/Sky light</td>
<td>G&T</td>
<td>Placement, Area</td>
<td>Color, Reflectance</td>
<td>□</td>
<td>■</td>
<td>□</td>
</tr>
<tr>
<td>Frame/Mullion</td>
<td>U-value, SHGC, VT</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade</td>
<td>Exterior horizontal/vertical shade</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing considering solar gain and shading</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Window/Curtain wall/Sky light</td>
<td>Glazing</td>
<td>U-value, SHGC, VT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame/Mullion</td>
<td>U-value, Glass-Frame ratio, Air tightness</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade</td>
<td>Exterior horizontal/vertical shade</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrochromic Glazing</td>
<td>EnergyPlus, eQUEST</td>
<td>Window/Curtain wall/Sky light</td>
<td>Glazing</td>
<td>SHGC, VT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-tight envelope to reduce infiltration</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Exterior wall</td>
<td>Construction</td>
<td>Air tightness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>Vestibule</td>
<td>Placement, Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window/Curtain wall/Sky light</td>
<td>Frame/Mullion</td>
<td>Air tightness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double skin facade/air flow window</td>
<td>EnergyPlus, TRNSYS</td>
<td>Window/Curtain wall/Sky light</td>
<td>Glazing</td>
<td>U-value, SHGC, VT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior wall</td>
<td>Frame/Mullion</td>
<td>U-value, Glass-Frame ratio, Air tightness</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green roof</td>
<td>EnergyPlus, TRNSYS *not yet commercial</td>
<td>Roof</td>
<td>Construction</td>
<td>R-value, Heat capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Insulation, R-value</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td>Tree, Grass</td>
<td>Type, Orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green wall</td>
<td>TRNSYS</td>
<td>Exterior wall</td>
<td>Construction</td>
<td>R-value, Heat capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>R-value</td>
<td>□</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td>Grass</td>
<td>Type, Orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light shelf</td>
<td>EnergyPlus, Equest</td>
<td>Window/Sky light</td>
<td>Glazing</td>
<td>U-value, SHGC, VT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light duct</td>
<td>EnergyPlus</td>
<td>Shade</td>
<td>Exterior horizontal/vertical shade</td>
<td>□</td>
<td>■</td>
<td></td>
</tr>
<tr>
<td>Trombe wall</td>
<td>Indoor blind</td>
<td>Blind/Curtain</td>
<td>G&T</td>
<td>Placement, Area, Orientation</td>
<td>R-value, Heat capacity</td>
<td></td>
</tr>
<tr>
<td>PCM (Phase Change Material) applied in wall and ceiling</td>
<td>Exterior wall</td>
<td>Window/Curtain wall/Sky light</td>
<td>Shade</td>
<td>R-value, Heat capacity, Air tightness</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>Construction</td>
<td>Insulation</td>
<td>R-value</td>
<td>Color, Heat capacity</td>
<td></td>
</tr>
</tbody>
</table>

<p>| ECM Simulation | Object | Sub-Object | LOD | PS | SD | D | CD | Cons/Occup |
| High efficiency plant | EnergyPlus, eQUEST, TRNSYS | Heat exchanger for district heating | Placement, Capacity | Efficiency, Heat source type |
| | Water/Steam boiler | Placement, Heating capacity | Fuel type, Tube type, Efficiency |
| High efficiency refrigerator | EnergyPlus, eQUEST, TRNSYS | Vapor compression chiller | Placement, Capacity | COP, Compression refrigeration type, Compressor type, IPLV, Performance curve, Compressor control |
| | Absorption chiller | Placement, Cooling capacity, Hot water capacity | Heat source connection, Fuel for direct fire, External heat source, Cooling COP, Heating COP, IPLV, Performance curve |
| | Ice storage | Placement, Heat capacity | Volume, Ice making type, Insulation, Refrigerant type |
| | CHW storage | Placement, Heat capacity | Volume, Insulation |
| Variable speed compressor, condenser, pump, fan | EnergyPlus, eQUEST, TRNSYS | Heat pump/Variable Refrigerant Flow (VRF) | Compressor | Speed control |
| | | Fan | Flow control |
| | | Vapor compression chiller | Compression refrigerator type, Compressor type, Compressor control |
| Absorption chiller-heater | EnergyPlus, eQUEST, TRNSYS | Absorption chiller | Placement, Cooling capacity, Hot water capacity | Heat source connection, Fuel for direct fire, External heat source, Cooling COP, Heating COP, IPLV, Performance curve |
| District heating and cooling | EnergyPlus, eQUEST, TRNSYS | Heat exchanger | Placement, Capacity | Efficiency, Heat source type |
| Optimal on/off for plants | EnergyPlus, eQUEST, TRNSYS | Water/Steam boiler | HW reset, On-demand control |
| On-demand operation for plants | EnergyPlus, eQUEST, TRNSYS | CHW, CW, HW Pump | On-demand control |
| Outside air and load reset for CHW, CW, HW | EnergyPlus, eQUEST, TRNSYS | CHW, CW, HW Pipe | Placement, Diameter, Length | U-value, Inlet outlet water delta t, Pressure drop per unit length, Pressure drop by fitting, Pressure drop by plant, Pressure drop by equipment/device, Pressure drop by control and balancing |</p>
<table>
<thead>
<tr>
<th>System</th>
<th>Simulation</th>
<th>Object Sub-Object</th>
<th>LOD</th>
<th>PS</th>
<th>SD</th>
<th>D</th>
<th>CD</th>
<th>Cons/Occup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimized HVAC zoning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHU</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Volume, Cooling capacity, Heating capacity, Configuration, Dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>Simulation</td>
<td>Object Sub-Object</td>
<td>LOD</td>
<td>PS</td>
<td>SD</td>
<td>D</td>
<td>CD</td>
<td>Cons/Occup</td>
</tr>
<tr>
<td>Dedicated Outdoor Air System (DOAS)</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Volume, Air flow rate, Cooling capacity, Heating capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCU</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Cooling capacity, Heating capacity, Air flow rate, HW flow rate, CHW flow rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilled beam Diffuser</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Actuation type Induction ratio, Cooling capacity, Heating capacity, Air flow rate HW flow rate, CHW flow rate Indoor unit control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underfloor Air Distribution System, Displacement ventilation systems</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Revolving type, Power, Efficiency, Performance curve (Flow rate, Pressure), Flow volume control, Flow control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Area, Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Area, Volume, Height, Orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat/Enthalpy Recovery Ventilation</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>AHU Heat/enthalpy recovery Type, Flow rate, Heating heat recovery rate, Cooling heat recovery rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERV unit</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Placement, Type, Flow rate, Heating heat recovery rate, Cooling heat recovery rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desiccant and evaporate cooling</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>DOAS Desiccant Cooling Desiccant type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night purge control</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>AHU Night purge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Controlled Ventilation(DCV)</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>AHU Economizer OA control, OA damper airtightness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional on/off control for AHU</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>AHU Economizer OA control, OA damper airtightness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside air temperature and load reset</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Boiler HW reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage Carbon Monoxide control</td>
<td>TRNSYS</td>
<td>AHU CO control for garage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High efficiency water heater</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Water heater Placement, Hot water capacity, Fuel type, Efficiency, Water storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated pipe</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>CHW, CW, HW, DHW pipe U-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water saving closet and tab</td>
<td>EnergyPlus, eQuest *only water heating</td>
<td>Closet, Tab Boiling method Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylight sensor</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Ambient light Light schedule, Daylight control, LED deeming control, Exterior light automatic on/off, Grouping control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deeming and on/off control</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Ambient light Light schedule, LED deeming control, Exterior light automatic on/off, Grouping control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>Simulation</td>
<td>Object</td>
<td>Sub-Object</td>
<td>LOD</td>
<td>PS</td>
<td>SD</td>
<td>DD</td>
<td>CD</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Lighting schedule per space</td>
<td>EnergyPlus, eQUEST, TRNSYS</td>
<td>Ambient light</td>
<td>Light schedule</td>
<td>Placement, Wattage, On-site PV attached</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ext. light</td>
<td>Placement, Area, Azimuth, Angle, Seasonal shade</td>
<td>Module type, Tracking mode Generation capacity, Generation efficiency Nominal operation cell temperature, Temperature coefficient, Loss coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar panel</td>
<td>Placement, Capacity</td>
<td>Efficiency</td>
<td>Placement, Voltage, Wattage, Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverter</td>
<td>Placement, Number</td>
<td>Control</td>
<td>Solar panel Placement, Area, Azimuth, Altitude, Seasonal shade Type Capacity, Efficiency, Absorptivity, Flow volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hot water tank</td>
<td>Placement, Volume, Heat capacity Insulation</td>
<td>Efficiency, Performance curve (Flow rate, Head) Flow control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary pump</td>
<td>Placement, Power</td>
<td>Efficiency, Performance curve (Flow rate, Pressure) Flow volume control (CAV, VAV) Variable flow control (RPM, Outlet/Inlet damper, Inlet vane, Variable pitch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat exchanger</td>
<td>Placement, Capacity, Efficiency</td>
<td>Solar panel Placement, Area, Azimuth, Altitude, Seasonal shade Type Capacity, Efficiency, Absorptivity, Flow volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply fan</td>
<td>Placement, Power</td>
<td>Revolving type Efficiency, Performance curve (Flow rate, Pressure) Flow volume control (CAV, VAV) Variable flow control (RPM, Outlet/Inlet damper, Inlet vane, Variable pitch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat pump</td>
<td>Placement</td>
<td>Cooling capacity, Heating capacity, Cooling COP, Heating COP Compressor control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground heat exchanger</td>
<td>Placement, Land area, Length, Number, Pipe diameter, Distance between pipes Type Capacity, Grouting conductivity</td>
<td>Efficiency, Performance curve (Flow rate, Head) Flow control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary and Secondary pump</td>
<td>Placement, Power</td>
<td>Efficiency, Performance curve (Flow rate, Head) Flow control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expansion tank</td>
<td>Placement, Volume, Heat capacity</td>
<td>Efficiency, Performance curve (Flow rate, Head) Flow control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First, we have investigated the design phases at which design elements and attributes of architectural and MEP objects are determined according to the building design process in Table III.

<table>
<thead>
<tr>
<th>TABLE II: PHASES OF THE BUILDING DESIGN PROCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>Pre-Schematic Design (PS)</td>
</tr>
<tr>
<td>Schematic Design (SD)</td>
</tr>
<tr>
<td>Design Development (DD)</td>
</tr>
<tr>
<td>Construction Document (CD)</td>
</tr>
<tr>
<td>Construction/Post occupancy (Cons/Ocup)</td>
</tr>
</tbody>
</table>

V. LEVEL OF DETAIL (LOD) OF AN ECM

In the pre-schematic design phase, layout and mass planning (such as location, orientation, height and area of a building) are mainly discussed with a feasibility study and then confirmed in the schematic design phase. Design criteria and conditions are already fixed (such as the surrounding terrain and climate of the building) before the design process begins. For MEP, it is very little to be determined at this stage because no specific design values are available yet. Since a ground heat exchanger is, however, installed in the site, the position and area of the geothermal system need to be considered together within the building layout.

In the schematic design stage, an overall shape, structure and materials of a building (such as envelopes, story height, stairs) are determined. In the MEP, user schedule, lighting and ventilation can be captured considering the use and size of the building. In addition, properties such as location and area are discussed for design entities located outside the building such as solar panels or underground heat exchangers.

Designers who lack expertise in simulation tools, such as design engineers, are somewhat reluctant to understand unfamiliar simulations. Therefore, in this paper, we have tried to propose a guideline of simulation use in order to encourage the simulation practitioners in easily evaluating the building energy performance. We have investigated a functionality of DOE-2.1, ECOTECT, EnergyPlus, eQUEST, ESP-r, HAP, IDA ICE, IES <VE>, Tas, TRACE and TRNSYS to determine what simulation tools best capture ECMs at each design stage. But only EnergyPlus, eQUEST and TRNSYS are marked in Table I, because they are mostly used simulations in Korea.

VI. SIMULATION PROGRAMS FOR EVALUATING BUILDING ENERGY PERFORMANCE

Building energy simulation has been developed since 1970, and a use of simulation tools has been highly encouraged for green building designs. However, contrary to the advocacy group who goes for a new technology of building simulation, the pragmatist groups such as design engineers are somehow reluctant to understand unfamiliar simulations.

Therefore, in this paper, we have tried to propose a guideline of simulation use in order to encourage the simulation practitioners in easily evaluating the building energy performance. We have investigated a functionality of DOE-2.1, ECOTECT, EnergyPlus, eQUEST, ESP-r, HAP, IDA ICE, IES <VE>, Tas, TRACE and TRNSYS to determine what simulation tools best capture ECMs at each design stage. But only EnergyPlus, eQUEST and TRNSYS are marked in Table I, because they are mostly used simulations in Korea.

VII. CONCLUSION

To encourage energy simulations in building design, this paper proposes a guideline concerning what simulation is appropriate for each ECM to practitioners who are lack of the expertise in energy simulation. We hope to convince the people who have a sense of discomfort with unfamiliar simulations, such that various applications of building energy simulation can be tried out in the design phase. We also expect a convergence between architectural designers who lack the expertise of equipment, and MEP designers who lack the expertise of architecture. Therefore a systematic and integrated design can be implemented from the initial planning phase to the operation and maintenance phase.

ACKNOWLEDGEMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2015R1C1A2A01053559).

REFERENCES

Mina Choi will receive a B.S degree in engineering in February 2017 from the School of Architecture of Seoul National University of Science and Technology, Seoul, South Korea.

Gahee Kim will receive a B.S degree in engineering in February 2017 from the School of Architecture of Seoul National University of Science and Technology, Seoul, South Korea.

Sean Hay Kim received a Ph.D. from the Georgia Tech. Before joining the Seoul National University of Science and Technology, she worked for Siemens and Autodesk in the U.S.