
  

 
Abstract—This paper proposes a new decision approach in 

energy management systems on a large scale. This approach 
aims to optimal manage energy demand in real-time by 
considering share renewable energy excess between microgrids 
in order to minimize energy consumer costs, maximize energy 
producer gains and reduce gas emissions. A microgrid, in seller 
mode, may have a risk of a decreasing profitability when the 
excess energy is supplied. As advance estimation of energy 
consumption and production may give an unstable input, so this 
microgrid may confirm to sell a quantity of energy which will be 
required later for itself. To overcome this inconvenience, a 
profitable energy selling price which is based on the energy 
selling risk is a good solution to avoid inefficient sales. In our 
solution, profitability is increased thanks to our energy selling 
price which is defined in a flexible manner and is adequately 
adapted to the microgrid’s excess energy and the profitability 
factor. Simulation results show that our energy sharing model 
satisfy microgrid’s requirements. 
 

Index Terms—Energy management, energy efficiency, cost 
optimization, gain maximization.  
 

I. INTRODUCTION 

Today, the rate of consumption from fossil fuel (petroleum, 
coal and natural gas) is very high [1]. The world depends on 
fossil fuels to satisfy our energy needs. According to the U.S. 
Energy Information Administration (EIA) in 2014, 66% of 
the nation’s electricity was generated by fossil fuels [2]. 
However, fossil fuels when burnt can lead to have serious 
environmental problem such as air pollution that leads to 
global warming (climate change) [1], [3], [4]. The latter is 
affecting many parts of the world and therefore can have 
severe consequences on the habitats. 

The appearance of new productions from distributed 
renewable sources which are increased sharply in last decade 
may allow for decrease our dependence on fossil fuels 
drastically. Renewable energy sources become an instrument 
of climate policy. This new intermittent production 
(distributed generation) must be efficiently integrated into 
the electricity distribution system [5]. A microgrid is a 
platform composed of distributed energy resources, 
distributed energy storage devices and loads which can be 
disconnect from the traditional grid and operate 
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autonomously. Accordingly, an intelligent microgrid appears 
necessary [5]. Microgrid is taken as the future smart grid. 
Such smart grid aims to better manage peak electricity 
demands, optimize the energy transfer cost, integrate easily 
news electricity sources and uses (Photovoltaic, Electric Cars 
consumption...) and mostly reduce gas emissions. In smart 
microgrid, energy management research has recently 
received considerable attention, as can be seen in the large 
amount of work reviewed in [5]. However, to motivate 
consumers to actively and voluntarily participate in such 
management programs is one of the key challenges of 
successful energy management [5]-[7]. Furthermore, energy 
management has become an active topic which aims at one or 
both of the following design objectives: reduce gas emissions 
by automatically reducing and shifting consumption in 
microgrid at peak hours in response to varying electricity 
price [8]-[10]. 

Various energy management approaches were developed 
for smart microgrids like: the Optimization based Residential 
Energy Management (OREM) [11], in-Home Energy 
Management (IHEM) [11], Residential Load Control (RLC) 
[12], Decision support Tool (DsT) [13], Appliance 
Coordination (ACORD) [14], optimum load management 
(OLM) [15], Optimal Consumption Schedule (OCS) [16], 
Appliance Coordination Scheme (ACS) [17], microCHP 
based Scheduling [18], incentive-driven Distributed Energy 
Sharing system (iDES) [19], and Multiagent Based 
Distributed-Energy- Resource Management (multiagent 
systems (MASs)) [20]. The pricing schemes like, Real Time 
Pricing (RTP), Time of Use (ToU), Inclining Block Rates 
(IBR), Critical Peak Pricing (CPP), day ahead pricing (DAP) 
have been proposed by distribution companies for smart grid 
in order to lead towards efficient electricity use [21]. Their 
main goal is encouraging microgrids to shift their load 
individually and voluntarily in order to reduce their 
consumption at peak hours. 

Some of existing approaches have considered the 
management of the energy excess locally and at 
neighborhood (between microgrids/neighbors) [19], [20]. 
Indeed, sharing energy between neighbors allows for: 

 Better profitability for every microgrid n, because 
when it is: 

– in seller mode, it may maximize its gains by selling 
its excess energy to the neighbors at a Selling Price 
(SPn), which is higher than the grid’s Buying Price 
(BP). 

– in buyer mode, it may reduce the energy bill by 
buying energy from neighbors at a Selling Price (SPn) 
which is less than the grid’s Selling Price (SP). 

 Better efficient energy management since local 
energy purchase makes it possible to satisfy 
neighbors’ requests without needing to shift the 
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consumption in microgrid. 
Sharing energy between microgrids is based on an 

estimation of the energy consumption and generation. 
However, advance estimation may give an unstable (or 
uncertain) input because consumption and production may 
increase or decrease over the time. At a given time, a 
microgrid may act as a seller (i.e. when it has excess energy) 
and/or a buyer (i.e. when a lack of electric energy takes place). 
In fact, based on uncertain inputs, the microgrid, in seller 
mode, may estimate that it will have an excess of electric 
energy. Therefore, this microgrid will agree to sell an amount 
of energy to its neighbors. However, sometimes the actual 
microgrid energy consumption may exceed the predicted 
consumption or/and the actual microgrid production is lower 
than the predicted production. In this case, the seller may 
confirm to sell a quantity of energy which will be required for 
himself later. Therefore, when the energy will be required 
later, this microgrid will be obliged to buy energy from its 
neighbors (other microgrids) or from electric utility 
companies (grid) with high prices. Selling energy that will be 
required later conduct to profitability loss for the seller 
because, in the majority of cases, it will be obliged to buy 
energy more costly than the energy that it had. 

To overcome this sort of inconvenience, we propose in this 
paper, on a large scale, a real-time decision approach for each 
microgrid (homes, neighborhoods, cities, institutional 
buildings, campuses, etc.) called Real-Time Distributed 
Energy Management (RTDEM). Based on RTDEM 
approach, a microgrid, in seller mode, must propose a 
profitable selling price. The defined selling price must be 
flexible and adaptable to its surplus energy and a profitability 
factor. This profitability factor is necessary to determine 
whether the surplus energy proposed for sale will be required 
later for itself in order to avoid non-optimal sales operations 
and, consequently, maximize the seller’s gain. When the 
microgrid is in buyer mode, it decreases its energy bill by 
using its own energy then the energy from the neighbors by 
choosing the best alternative to satisfy its needs and lastly the 
energy from the utility companies (grid). The best alternative 
is determined by solving an optimization problem 
considering different criteria such as selling price, available 
energy, etc. 

The present work focuses on the validation of the new real- 
time decision approach on a large scale by considering share 
renewable energy excess not only between homes but also 
between neighborhoods, campuses, cities, etc. in order to: 

 motivate the local renewable energy investment, 
 minimize energy losses from fossil fuels. 
In our solution, profitability is increased thanks to our real- 

time management. This management may be improved based 
on a gainful energy selling price. RTDEM decreases the 
energy cost by optimally choosing, in real-time, between 
local or neighborhood-generated energy. It requests 
grid-supplied only in case of neighbors’energy shortage. Our 
proposal   also maximizes each producer’s gains by selling its 
excess energy not only to the utility companies but also to 
neighbors at an optimal selling price, which will motivate the 
local renewable energy investment. 

This paper is organized as follows. Section II is the pro- 
posed approach RTDEM. Section III reports simulation 
results. Section IV concludes the material. 

II. REAL-TIME DISTRIBUTED ENERGY MANAGEMENT 

(RTDEM) 

At a given time, each microgrid in our system may act as a 
seller (when it produces more than it consumes) and/or a 
buyer (when its local energy source is not sufficient to satisfy 
its demand). When the microgrid is in buyer mode, it may 
reduce the energy bill by buying energy from neighbors at a 
Selling Price (SPn) which is less than the grid’s Selling Price 
(SP). RTDEM enables to satisfy in real-time any demand by 
requesting at first time local energy, second it requests 
neighbors in case local energy shortage, and at worst it 
demands to grid. When the microgrid is in seller mode, it may 
maximize its gains by selling its excess energy to its 
neighbors at SPn, which is higher than the grid’s Buying 
Price (BP). 

At any time, a microgrid n may receive a request for 
energy purchases from the neighbors. Upon receiving the 
request, the microgrid n its excess of energy based on an 
estimation of energy consumption and production for the 
requested time slot. If there is an excess energy, this seller 
must maximize its gain by proposing an optimal energy 
selling price. 

In most existing energy management approaches, the 
excess energy is sold to neighbors at a price that depends on 
Acceptable Revenue Level (ARL) [19], [20]. ARL is defined 
as the unit cost of energy. However, this price is difficult to 
define adequately and may potentially vary for each 
microgrid which decreases the profitability of the microgrid 
who has a high ARL. With a high ARL, microgrid cannot sell 
energy, when the supply ≥ demand, to neighbors its excess 
energy. 

In addition, cost amortization cannot be compatible with a 
price that allows selling to neighbors (excess energy price > 
SP). In this case, microgrids will always prefer energy from 
the company utility that will not motivate the microgrid to 
actively and voluntarily participate in energy management. In 
order to promote energy sharing and renewable energy, we 
propose that the excess energy must be sold at an adequate 
and adaptive price. It will be more profitable for the seller n 
sell energy to the neighbors at a selling price (SPn), which is 
higher than BP and less than SP, because neighbors trade 
only with sellers which propose a SPn less than SP. 
 

BP < SPn < SP.                                 (1) 
 
Three main factors that will impact the price SPn which 

are: supply-demand relationship, excess energy and 
profitability factor. 

 If (Supply ≤ Demand) then seller proposes a high 
price: 

 
SPn = (SP − ϵ)                                (2) 

 
 Else (if Supply > Demand) then SPn depends on the 

excess energy and the profitability factor.  
 

SPn = f (Excess, pfn)                            (3) 
 

A rate of profitability factor pfn is necessary for each 
microgrid n to specify the Energy Selling Risk (ESRn). 
Profitability factor may define approximately the probability 
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of the use of excess energy later. If pfn = 0%, the seller don’t 
trust on its estimation and may require its excess energy. Its 
ESRn is equal to 100%. Otherwise, if pfn = 100%, then the 
seller trust on its estimation and is certain that it will not 
consume its excess energy. Its ESRn is equal to 0%. 
Profitability factor is calculated according to the historical of 
the total of previous Right amount Sold (RS) divided by the 
Total quantity Sold (TotS) for the requested Time Slot (TS). 

 

(%)n

RS
pf

TotS
 


                           (4) 

 
The proposed selling price SPn must be less than SP and 

higher than BP. If seller has a lot of energy and his 
profitability factor is great (equal to 100%), then it wants to 
flow (sell) a maximum energy to its neighbors since it is more 
profitable   to sell surplus at SPn to neighbors than at BP to 
utility companies (grid). Thus, it offers a low price: 

 
SPn = (BP + ϵ)                                 (5) 

 
Otherwise, if the seller has less energy and his profitability 

factor is low (equal to 0%), then seller avoids selling excess 
energy which could be required later for itself by offering a 
high price: 

 
SPn = (SP − ϵ)                                (6) 

 
With high price, seller has low chance to sell its energy 

when the supply is greater than demand. However, if its 
consumption increases later, its own energy will stay 
available and avoid buying energy at higher price. In general 
cases, each seller n determines, at each request, its energy 
selling price SPn by using the following function: 

 

 
 
To maximize profits, producer saves in a list all requests 

received and it may periodically decide to propose to sell a 
surplus of energy (which is not required). It sends to all 
neighbors that they have requested for energy for the present 
time slot a sale request by proposing a low price. If there are 
any responses, it decides to sell the surplus of energy to grid. 
The proposed approach encourages the cooperation between 
microgrids to ensure their profits which consist of increasing 
their profitability. 

III. PERFORMANCE ANALYSIS AND SIMULATION 

The main idea of our proposed RTDEM consists in 
improving the microgrids behavior in order to increase their 
profitability. As we can see, there are several operations (e.g. 
buying, selling, making decision, etc.) that are executing 
simultaneously and in different location (i.e. microgrids) and 
potentially interacting with each other. This may lead to 
concurrent operations and to competition between microgrids 
who are trying to reach their own goal. For this, Java 
concurrency (multi-threading) has been used in order to 
develop a simulator and validate then the proposed energy 
management approach. It allows also multiple microgrids to 
process multiple transactions in parallel and in real-time. 

In order to prove the effectiveness of our solution, we 
evaluate in this section, during one year, the performance of 
our proposed RTDEM approach compared to: 

• MAS, where a distributed energy resource 
management approach target to match the buyers 
and sellers in energy market [20], 

iHEM, where individual microgrids (homes) harvest and 
consume energy by themselves without energy sharing [11]. 

For this evaluation, we consider a smart power distribution 
system which is composed of five microgrids (MG1, MG2, 
MG3, MG4, and MG5). For the purpose of study, each 
microgrid is selected to have between 1 to 15 users (homes, 
buildings, institutional buildings, etc.), and distributed 
renew- able sources. Each microgrid n (MGn) has its own 
profile. During a year, three types of profiles can exist: 

Profile 1: the microgrid consumes, on average, the same 
quantity of energy as it produces: 

 

E (Pn) - E (Cn) = 0 
 

with Pn = production of microgrid n, Cn = consumption of 
MGn , E = mathematical expectation. 

Profile 2: the microgrid consumes, on average, less than it 
produces: 

 

E (Pn) - E (Cn) > 0 
 

Profile 3: the microgrid consumes, on average, more than 
it produces: 

 

E (Pn) - E (Cn) < 0 
 

We assume that MG1, MG2, MG3, MG4, and MG5 

have, respectively, Profile 3, 3, 1, 2 and 2. Table I present the 
profile of each microgrid. For this evaluation, we consider 
that E (Cn) is roughly equal to 3 kilowatts (kW), ie. every 
MGn consumes on average roughly 3kW. 

 
TABLE I: MICROGRID’S PROFILE  

microgrid Profile 
microgrid  1 (MG1) E(P1)  =  1/3 E(C1) 
microgrid  2 (MG2) E(P2)  =  2/3 E(C2) 
microgrid  3 (MG3) E(P3)  = E(C3) 
microgrid  4 (MG4) E(P4)  =  4/3 E(C4) 
microgrid  5 (MG5) E(P5)  =  5/3 E(C5) 

 

We assume that BP/unit = $0.21 and SP/unit = $0.5, with 
unit = 100 Watts (W) = 0.1 kilowatts (kW). 

We assume that the cost generation of each microgrids 
depends on its profile (the one who produces more has a 
greater cost). The value of the unit cost of energy (ARL) 
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affects MAS. If ARL ≤ BP + ϵ, in MAS, seller will earn 
almost nothing. Else (if ARL > SP), in MAS, seller may 
not sell anything to its neighbors. For this reason, we 
considered we considered an ideal case for MAS in which 
ARLMG1 = BP + ϵ = 2.3, ARLMG2 = 2.95, ARLMG3 = 3.6, 
ARLMG4 = 4.25, ARLMG5 = SP - ϵ = 4.9. However, high 
producer like MG5 cannot increase its profitability when the 
supply is greater than the demand, because it proposes a high 
selling price. 

At first, as no sales have been made yet, every MGn 

initializes the profitability factor on its estimation at 50%. 
Contrary to assumption considered by [20], we assume a 

realistic hypothesis where the demand and supply are not 
remaining constant during an interval/time slot. 

In the following we present 3 scenarios where the 
consumption and production, for each MGn, are assumed 
varying according to three main distributions: constant, 
uniform and normal (or Gaussian). In each figure (except 
for "Real expense" results and "Microgrids’ profile"), the 
yellow color represents all the operations with neighbors, 

the green color represents the amount of energy consumed 
locally (from local energy sources), and the red color 
represents all the operations with grid (utility companies). 

A. Scenario 1: Constant Consumption and Production 

In order to underline the basic solutions to behavior, this 
first scenario compares our solution with MAS [20] and 
iHEM [11] in a simple case where we suppose that the 
consumption and production of energy are not changing over 
the time (in each time slot). We assume that a microgrid 
requires the same quantity of energy 3 kW. In this case, 
sellers will make always profitable sales, their profitability 
factor will be equal to 100%, because advance estimation 
may give a certain input. Fig. 1 shows the quantity of energy 
purchased, for each MGn, from local energy sources (green 
color), neighbors (yellow color) and from grid (red color). 
Fig. 2 shows the expense of the quantity purchased from 
neighbors and from grid. Fig. 3 shows the quantity of 
energy supplied, for each microgrid, to neighbors and to 
grid. Fig. 4 shows the gain of the quantity supplied. 

 

 
Fig. 1. Scenario1-energy purchased. 

 

 
Fig. 2. Scenario1-Expense. 

 
Simulation results show that MG3, MG4 and MG5  satisfy 

their needs from their local energy (Fig. 1) and they don’t 
need to buy energy from neighbors or utility companies 
(grid). They expense $0 (see Fig. 2). On the contrary, MG1 

and MG2 are not able to locally satisfy their needs (see Fig. 1). 
With iHEM, they will request the missing only from grid 

since this solution does not consider neighboring exchange 
(see Fig. 1). On contrary, with RTDEM and MAS, they will 
independently request the missing energy of MG4 and MG5 

(see Fig. 1). RTDEM and MAS decrease slightly1 the energy 
 

1In this case, sellers propose a high selling price because the demand is 
equal than the supply. 
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cost compared to iHEM by benefitting from neighborhood 
energy surplus (see Fig. 2). With RTDEM and MAS, MG4 

and MG5 supply their excess to their neighbors (see Fig. 3). 
However, with iHEM, this excess is supplied to grid (see Fig. 
3). Moreover, MG4 and MG5 in RTDEM earn more than in 
MAS and iHEM. This conclusion is true in all cases except 

in the particular case when ARL= (SP - ϵ) in which 
RTDEM = MAS, like MG5 which is in its ideal case (Fig. 
4). Indeed, with RTDEM, microgrids make more profit by 
selling their energy surplus at a higher price (thanks to our 
selling price function) while, with MAS, microgrids accept 
any offer greater than or equal to their ARL. 

 

 
Fig. 3. Scenario1-Quantity sold. 

 

 
Fig. 4. Scenario1-Gain. 

 

 
Fig. 5. Scenario1-Real expense. 
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Fig. 5 presents, on average, the Real Expense REn
2 for 

each MGn and for the neighborhood (REneighborhood = 
 .( ݊ܧܴ∑

If REn is positive then the MGn managed to satisfy its 
need, and its expense (Expensen) is equal to $0. Else (if 

REn is negative) then the microgrid n must expense $|REn|. 
Likewise, if REneighborhood is positive then the 

neighborhood managed to satisfy its need, and its expense 
(REneighborhood) is equal to $0. Else (if RENeighborhood is 
negative) then neighborhood must expense 
$|RENeighborhood|. The sign determines if it is a benefice (≥ 
0) or a deficit (< 0). In RTDEM and MAS, 
Expenseneighborhood = $0. However, in iHEM, Expense 
neighborhood = $|REneighborhood| = $8.7. 

Simulation of MAS gives the same results of real expense 
as RTDEM, because in constant case electricity use and 
generation is stable and certain. MAS is in its ideal case, the 
demand and supply remain constant during an interval, which 
is not realistic. For this case, the profitability factor does not 
affect energy selling price because sellers make all time a 
good sales based on their certain estimation for the requested 
interval/time slot. In fact, we notice that the profitability 
factor of MG1, MG2 and MG3 remain equal to 50 % (initial 
value), because they never made sales. The profitability 
factor of MG4 and MG5 are equal to 100 %, because they 
make always a profitable sale. 

B. Scenario 2: Variable Production and Consumption 
(Uniform Distribution) 

We consider more realistic assumption where the 
consumption and production of energy for each requested 
time slot are not constant (stable) but may vary with the 
weather, as changes in temperature and humidity affect the 
demand. With this realistic assumption a profitability factor 
is necessary to avoid all non-optimal sales, because the 
estimation of energy production and consumption may give 
an uncertain input. Profitability factor determines the 
microgrid’s trust on its estimation in order to propose a very 
profitable price. 

For this case, we assume that Cn  [0 kW, 6 kW] for each ∈
MGn. As production depends on the consumption then: P1 

 [0 kW, 2 kW], P2  [0 kW, 4 kW], P3 ∈ ∈ ∈ [0 kW, 6 kW], 
P4  [0 kW, 8 kW], P5  [0 KW, 10 kW]∈ ∈  (see previous 
table), Fig. 6 shows the average, during one year, of energy 
consumption and production for each microgrid n. 

Simulation results show that MAS requests more quantity 
of energy than real-time solution (RTDEM and iHEM), 
because it satisfy each microgrid’s demand based on an 
estimation of energy consumption and generation which can 
be greater, equal or lower to microgrid’s real consumption 
(see Fig. 7). In fact, sometimes the actual energy 
consumption may exceed or not the predicted consumption. 
Then, when the (real consumption < predicted consumption), 
microgrids in MAS may buy energy at a higher price which 
will not be required later. In this case, they will be forced to 
sell it to the grid at a lower price (i.e. at BP). Contrary to 
MAS, RTDEM and iHEM real-time manage the energy 
demand. RTDEM and iHEM request the same quantity of 

 
2With REn = Gainn - Expensen. (See Fig. 5 and Fig. 7). 

energy because they satisfy in real time each microgrid’s 
demand (see Fig. 7). RTDEM uses more efficient local 
renewable energy than MAS and iHEM. Note that for a 
microgrid, it is always more profitable to use its own energy 
then the energy from the neighbors and lastly the energy from 
the grid. We also observe that RTDEM use less energy from 
grid than MAS and iHEM (see Fig. 7). Consequently, with 
RTDEM microgrids expense less to grid (see Fig. 8) because 
they require less energy from network since they use more 
efficient renewable energy. 

 

 
Fig. 6. Microgrids’ profile. 

 
Indeed, with MAS, a MGn periodically estimate the 

surplus of energy in order to sell it. However, due to the 
nature of the MGn consumption and production that vary 
over the time, sometimes, the real energy consumption is 
greater than the estimation or the real energy production is 
lower than the estimation. This induces a lack of local energy 
and forces the MGn to buy energy at a price potentially 
higher than the energy it had sold before. Likewise, when the 
(real surplus< predicted surplus), they may sell a surplus (at 
lower price) which will be required later. Then, they must 
buy it from grid or neighbors at a higher price. While with 
RTDEM, microgrids sell their energy surplus at a flexible 
selling price which is profitable compared with MAS which 
has the price equal or greater to its ARL. On the other hand, 
iHEM sells its real energy surplus only to the grid (see Fig. 
9). 

RTDEM sells less energy to grid and more efficient energy 
to neighbors than iHEM and MAS (see Fig. 9). Consequently, 
RTDEM earns more from neighbors and less from grid 
compared to MAS and iHEM (see Fig. 10). Since RTDEM is 
real time based, local energy is not sold while required in a 
short term based on our defined profitability factor. In other 
words, with RTDEM, the local renewable energy produced is 
more profitable and will be promoted better than MAS and 
iHEM (thanks to our energy selling price which is based on 
the profitability factor and the excess energy). Based on this, 
RTDEM proposes a selling energy price adapted to each 
seller, which is not the case in the others approaches. 

Fig. 11 shows the profitability factor for each MGn on 
its estimation. The 1st MG (MG1) is a smaller producer 
and during 365 days he made any sales due to the stagnation 
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that we can see in the curve. In Fig. 11, we observe that the 
profitability factor of MG2 is very low because it sells its 
excess which is required later. The profitability factor of the 
3nd MG (MG3) is greater than the one of the 2st MG, 
because he took better decisions regarding the sales made. 
The profitability factor of the 1st, 2nd and 3rd MG is lower 
compared to the one of the 4th and 5th MG because the first 3 

MGs (MG1, MG2 and MG3) are smaller producers than the 
4th and 5th MG and when they sell their excess then they will 
have a very high possibility to need their estimated excess. 
Based on the profitability factor that it is able to specify the 
trust on the estimation, RTDEM proposes a selling price 
adapted to each seller, which is very profitable compared to 
the others approaches. 

 

 
Fig. 7. Scenario2-Energy source. 

 

 
Fig. 8. Scenario2-expense. 

 

 
Fig. 9. Scenario2-quantity sold. 
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Fig. 10. Scenario2-Gain. 

 

 
Fig. 11. Scenario2-Profitability factor of each microgrid. 

 

 
Fig. 12. Scenario2-Normal distribution showing proposed energy selling 

price. 
 
With RTDEM, high producer proposes, when the supply is 

greater than the demand, a low energy selling price contrary 
to small producer which propose a high price. As MG1, MG2 

and MG3 are small producers then, in RTDEM, their 
proposed energy selling price is high compared to high 
producer (MG4, MG5) which propose a less selling price in 
order to sell a maximum of energy. Contrary to MAS, the 
energy selling price depends on the ARL which is less for 
MG1, MG2 and MG3. Based on this, small producer expense 
less with RTDEM compared to MAS because in the majority 
of cases they satisfy their needs from higher producers. Fig. 
12 shows the normal distributions to make detailed of the 
proposed price for each microgrid in a short time scale (two 
week). In Fig. 12, we show four normal distributions having 
the same standard deviation (0.5). The purple (left-most) 
distribution, for MG5, has a mean of 3.37, the distribution in 
red, for MG4, has a mean of 3.59, the distribution in red, for 
MG3, has a mean of 3.90, and the distribution in blue 
(right-most), for MG2, has a mean of 4.29. 

iHEM and RTDEM use a real time decision that may give a 
stable (or certain) consumption, which causes a transition to a 
highly efficient economy. However, energy exchange 
between neighbors must also be considered (like MAS and 
RTDEM). Fig. 13 shows that MG1, MG2 and MG3 expense 
less with RTDEM than with MAS and IHEM. MG4 and MG5 

expense $0 in RTDEM, iHEM and MAS. As their (MG4 and 
MG5) sign is positive, then they have a benefice (gain). The 
benefice in RTDEM is greater than in MAS and iHEM. Our 
proposal combine Real Time decision and neighboring 
energy trading which guarantee more profitability for 
microgrids than MAS and iHEM (Expenseneighborhood = 
$6.45 in RTDEM, =$12.59 in MAS, =$16.50 in iHEM (Fig. 
13)). 

We have verified the efficiency of our approach by varying 
the interval of consumption: 

• Case 1: Cn ∈ [2.7, 3.3] for each MGn, P1 ∈ [0.9, 

1.1], P2 ∈ [1.8, 2.2], P3   [2.7, 3.3], P4 ∈ [3.6, 4.4], P5 ∈ 
[4.5, 5.5] 

• Case 2: Cn ∈ [2.4, 3.6] for each MGn, P1 ∈ [0.8, 

1.2], P2 ∈ [1.6, 2.4], P3    [2.4, 3.6], P4 ∈ [3.2, 4.8], P5 ∈ 
[4,6] 

• Case 3: Cn ∈ [1.5, 4.5] for each MGn, P1 ∈ [0.5, 

1.5], P2 ∈ [1, 3], P3 [1.5, 4.5], P4 ∈ [2, 6], P5 ∈ [2.5,7.5] 

• Case 4: Cn ∈ [0, 6] for each MGn, P1 ∈ [0, 2], P2 

∈ [0, 4], P3 [0, 6], P4 ∈ [0, 8], P5  ∈ [0, 10] 

• Case 5: Cn ∈ [0, 9] for each MGn, P1 ∈ [0, 3], P2 ∈ 

[0, 6], P3 [0, 9], P4 ∈ [0, 15], P5 ∈ [0, 15] 
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Fig. 13. Scenario2-Real expense. 

 
We conclude that when the interval is large, neighborhood 

in RTDEM spends much less compared to MAS and iHEM 
that when the interval is small (Fig. 14). 

 

 
Fig. 14. Scenario2-Real expense when varying the interval of consumption. 

 

C. Scenario 3: Variable Production and Consumption 
(Normal Distriution) 

In our third case, we consider a more realistic assumption 
where the consumption and production of energy vary over 
time according to normal distribution. Normal distribution 
depends on two factors: the mean and the standard deviation. 
The mean of the distribution determines the location of the 
center of the graph, and the standard deviation determines the 
height of the graph. For consumption, we assume that the 
mean is equal to 3 and the deviation is equal to 1. As 
production depends on consumption, we adapted the mean 
and deviation, for each producer, to keep its profile. 

Simulation results (see Fig. 15) show that MG1, MG2 and 
MG3 expense less with RTDEM than with MAS and iHEM. 
MG4, and MG5 expense $0 with RTDEM, MAS and iHEM. 
whereas, MG4, and MG5 earn more with RTDEM than with 
MAS and iHEM. RTDEM decreases expenses in neigh- 
borhood in comparison with MAS and iHEM (see Fig. 15). 
ExpenseNeighborhood = $3.80 in RTDEM, $7.37 in MAS, 
$12.75 in iHEM. 

 

 
Fig. 15. Scenario3-Real expense. 

 
We have verified the efficiency of our approach using 

other value of the standard deviation. We notice that when the 
standard deviation is large, RTDEM spends much less 
compared to MAS (it deceives sorely and therefore these 
results are not as effective) and iHEM when the standard 
deviation is small. 

Real-time manages the energy demand and share energy in 
neighborhood cause a transition to a highly efficient 
economy. The encouragement of the investment of 
renewable energy leads to reduce our need from fossil fuels. 
The efficient use of renewable energy sources is the only way 
that degradation of Earth’s climate system can be halted, and 
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the only real option for raising severe consequences on the 
habitats [22]. 

 

IV. CONCLUSION 

In this paper, we have proposed a Real-Time Distributed 
Energy Management (RTDEM) to share renewable excess 
energy among microgrids. RTDEM is based on a profitability 
factor that a seller defines on its estimated excess energy in 
order to realize optimal sales. The profitability factor is 
defined based on the microgrid’s trust on its estimation. 
Furthermore, RTDEM is able to determine the best 
alternative to satisfy microgrid’s requirements (i.e. decrease 
energy costs and maximize energy gains). When the 
microgrid is in buyer mode, the best alternative is determined 
by solving an optimization problem considering different 
criteria such as selling price, available energy, etc. It 
decreases its energy bill by using its own energy then the 
energy from the neighbors lastly the energy from the grid. 
Whereas, when the microgrid is in seller mode, the best 
alternative is determined by proposing an optimal energy 
selling price. We presented simulation results and assessed 
the performance of our proposed algorithm, results proving 
the effectiveness of our solution compared with other 
approaches thanks to our adequately and flexible energy 
selling price. Simulation results show that RTDEM improves 
the energy sharing efficiency that leads to reducing gas 
emissions and encouraging the investment of renewable 
energy by minimizing energy cost and maximizing gain 
based on the interactions with microgrids without need to 
shift their demand. Thus, a profit is made even when 
considered loads are not able to be shifted, which is not the 
case for the similar existing works. 
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