
  

 
Abstract—In this paper, modeling of a three-phase Active 

Power Filter (APF) considering hybrid dynamics is investigated. 
A shunt active filter is considered to compensate for the current 
disturbances from the utility load. Power electronic circuits 
using APFs are considered as hybrid systems, and the concepts 
and theories of switched linear systems are introduced to model 
converter control systems. First, a three-phase converter system 
is equivalent to a switch linear system (ESLS) based on space 
vector pulse-width modulator (SVPWM) theory. Then, an ESLS 
is further transformed into a linear equivalent switch linear 
system by linearization. Finally, an energy-to-energy (EE) 
controller is designed. 
 

Index Terms—Active power filter, switched linear system, 
pulse width modulated. 
 

I. INTRODUCTION 

In recent years, various power semiconductor devices such 
as power diodes, thyristors, power transistors, P-MOSFETs, 
and IGBTs have been introduced and steadily developed. 
Power switching devices are being widely used in various 
power electronic circuits. During the operation of a power 
switch, power electronic circuits will show different 
topologies. Conventional power electronic circuit modeling 
uses the state-space averaging method, the average value of 
the equivalent circuit, the phase plane method, a large signal 
equivalent circuit model of unity, and so on. These modeling 
methods approximate their results to some extent and do not 
calculate exact amounts for the described system. In addition, 
we know that system modeling is an important tool and a 
prerequisite for researching systems. A good model can be 
helpful in system analysis. Thus, the question is how to 
accurately describe various kinds of circuit topologies that 
occur during the operation of a power switch, using a model. 

With the development of modern control theory, the theory 
of hybrid switching systems for power electronic circuit 
analysis and design provides a new way of thinking. A hybrid 
system is defined as consisting of a discrete event dynamic 
system (DEDS) and a continuous variable dynamic system 
(CVDS). [1] Obviously, power electronic circuits owing to 
their own switching characteristics comprise a typical amount 
of hybrid systems. As an important type of hybrid system, a 
switching system can more accurately describe the essential 
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characteristics of power electronic circuits. 
A hybrid switching system model description for power 

electronic circuits has the following characteristics: First, the 
model is completely accurate. There are no approximations. 
Various topologies of a converter can be reflected in the 
actual work, which reflects the essential characteristics of a 
hybrid switching system. Second, the model has very good 
uniformity. If various topologies of a converter are 
established, the first part of the model can be determined. 
Third, the basic characteristics of the control system can be 
easily analyzed. These characteristics include controllability, 
observability, and stability. Fourth, we are no longer limited 
to linear theoretical analysis and can model directly from the 
hybrid system. Proposing new control strategies and better 
system optimization will be possible [2]. 

 

II. LINEAR SYSTEM MODEL OF APF 

 

 

 
The APF [3]-[5] circuit is a typical example of power 

electronics. Its structure is shown in Fig. 1. As seen in the 
figure, the desired APF compensation current is determined 
through the detection system and the load current calculation, 
and then through a specific control algorithm to calculate the 
original closing of each switch-off time by the drive circuit to 
achieve the original control. Fig. 2 is a three-phase active 
filter circuit that is parallel with the load [6]. Its advantages 
are simple structure, small size, and high efficiency. The 

detection system detects the reference signal *i . In 
controlling six switches by turning them off and on, the APF 

generates a current i  track *i  in order to achieve 
compensation. aL  = bL  = cL  = L  are three-phase filter 

inductors, car  = cbr  = ccr  = r  are the equivalent resistances 

of the inductors, dcC  is the DC capacitor, sjV  is the system 

supply voltage, cjV  is the APF output voltage, ljr  is the 
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Fig. 1. The structure of APF.
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equivalent load resistance, sjr  is the resistance to the system 

power supply, and dcV  is the DC capacitor voltage. 

 

 

 
If the system load is disturbed, the system model can be 

expressed as follows: 
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where   represents a three-phase interference signal. 
Represented by the switch status s , its value is as follows: 
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Then, the following holds: 
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The formula can be obtained by inserting (2) and (3) into 

equation (1): 
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Thus, the switching function is 
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This can be verified in the following manner 
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System (1) after the simplified equation of state can be 

reduced as follows: 
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 (4) 

 
This result is a three-phase APF switching dynamic model. 

To achieve load current compensation, select the output 
function: 
 

 Tdccbca Viiy C  

 
where x , ω ,  bNaN SS ， , and y are the state vector of the 

APF, the interference vector, and the input and output, 
respectively.  bNaN SS ， , 1b , 2b , and C  are coefficients 

for the operating mode. 
 

III. EQUIVALENT SWITCH LINEAR SYSTEMS OF APF 

This paper will use the SV-PWM [6], [7] method. Fig. 3 
shows the reference signal in the first sector. 

 

 

 
One PWM cycle has seven subintervals of time, within 

each subinterval corresponding to a different state. To 
simplify the calculation, Fig. 3 is rearranged to give Fig. 4. 
Then, in one period, the SVPWM generates four subintervals 
of time. To determine the PWM waveform, we just need to 
calculate 1d , 2d  and 3d . 

Suppose the reference signal is at the first sector. System (4) 
can be seen as a switched linear system consisting of four 
linear subsystems. [See formula (5).] The values of the 
switching function of each subsystem are shown in Table I. 
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Fig. 2. A three-phase active filter.

Fig. 3. Seven subintervals of time.
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Formula (5) shows each subsystem of an APF as a 

continuous variable dynamic system. The switching operation 
of each subsystem is a discrete event dynamic system. State 
changes from x0 to x through the intermediate 

state xxxxx  4321
0

321  , namely: 
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where 122  d  and 233  d . System (4) is 

equivalent to 
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IV. LINEARIZED SYSTEMS 

 F  and  g  are nonlinear functions for the input. 

Therefore, we need to linearize the system. First, we define 
the following: 

Definition 1: If the system three-phase compensating 
current is zero, the APF output voltage is 

),,(, cbajirvv sjsjsjcj  . In one cycle of modulation, the 

output voltage cjv  that corresponds to the PWM function is 

δ(t) = [δ1(t), δ2(t), δ3(t)]  )(),(),(δ 321 tttt ）（ . If all 

this occurs, then we say the three-phase APF is in equilibrium:  
 

          Rttxtqtxtx  ,0,, 00,    

 
If a system is in equilibrium, the neighborhood of state 

difference will be defined as 0xxx  , and the input 

difference will be defined as  t  . Then, system (6) 

in the neighborhood of the state difference can be linearized 
as [8] 
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Fig. 4. Four subintervals of time.

TABLE I: THE VALUES OF THE SWITCHING FUNCTION OF EACH SUBSYSTEM
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V. OPTIMAL DESIGN 

Fig. 5 shows the optimized controller design logic diagram. 
 

 

 
We can achieve the output signal modulation by tracking 

the output signal and the interference signal feedback to the 
controller. Fig. 5 can be simplified as Fig. 6. We design a 
feedback controller that makes the closed-loop system (7) 
asymptotically stable, and the closed-loop transfer function 

ωzT  satisfies 
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A state control law having such properties is called an H∞ 

control law of the system (7). 
Theorem 1: In system (7), there exists a state feedback H∞ 

controller if and only if there exists a symmetric positive 
definite matrix X and a matrix W, such that the following 
matrix inequality (8) holds: [9] [10] 
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Furthermore, if for inequality (8) there is a feasible 

solution *X , *W , then 
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is system (7) in a state feedback H  controller. 

For a given scalar 0 , to obtain a γ-suboptimal 

controller with state feedback H , we consider the condition 

of a transfer function as 
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In this case, the corresponding matrix inequalities (8) 

become 
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By using the applicable LMI Toolbox feasp solver, the 

matrix inequality can be solved. 
Further, based on the γ-suboptimal controller for state 

feedback H , an optimization problem can be obtained: 
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If the solution exists, the system can obtain an H  optimal 

controller. 
Problem (10) can be solved by applying the LMI Toolbox 

mincx. 
 

VI. CONCLUSION 

Power electronic circuits comprise discrete event dynamic 
systems and continuous variable dynamic systems. To 
improve performance, a model power electronic circuit using 
a switching system is necessary and feasible. 

This paper uses a linear approximation. The system does 
not reach 100% accuracy. Thus, part of the linear 
approximation should be improved. 
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Fig. 6. Standard form.

Fig. 5. The optimized controller design logic diagram.



  

This research paper models the equivalent of an APF. 
Other power electronic circuits provide reference values for 
further study 
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