
  

 

Abstract—Studies into the determining size of battery energy 

storage system (BESS) has become significant recently, owing to 

their use in a variety of complex, high performance and energy 

storage system applications. This paper presents a comparative 

study of optimization techniques between particle swarm 

optimization (PSO) and artificial neural network (ANN) for 

evaluating the optimum size of BESS in the micro-grid system. 

In this paper, the micro-grid system consists of two micro 

turbine systems, solar photovoltaic (PV) system and BESS, and 

it is connected to the utility grid. Simulation results show that 

the optimal size of BESS-based PSO approach achieves the 

lowest performance in achieving the optimal BESS size 

compared to the optimal size of BESS-based ANN. However, the 

optimal sizing of BESS-based ANN approach gives the fastest 

conversion time compared to the optimal sizing of BESS-based 

PSO. 

 
Index Terms—Artificial neural network (ANN), battery 

energy storage system, frequency control, micro-grid, particle 

swarm optimization. 

 

I. INTRODUCTION 

One of the most important providers of rustic 

electrification projects demonstrates that almost 1.2 billion 

people do not have regular access to electricity. They live 

with difficulties that mostly are in rural areas. Micro-grid is 

considered to as a local grid incorporating with decentralized 

or distributed generations (DGs), battery energy storage 

system (BESS), and local loads, can operate in either in 

grid-connected mode or isolated mode, with feasibility of 

seamless transitions between them [1]. In isolated mode, the 

power transfer among DGs, BESS, and local loads should be 

balanced inside the stand-alone micro-grid in order to 

maintain the frequency stable. The advantages are found to be 

in power generation flexibility, security, reliability, and also 

improved power quality. As micro-grids do not send power 

over vast distances, so, they can make better use of low to 

medium voltage systems requiring less metal involved in 

heavy lines and switching equipment to accommodate loads 

for decreasing pollution issue and resource consumption. 

Another advantage is that it is feasibility to have dissimilar 

types of generation. For example, a micro-grid can use solar 

or wind to obtain the advantages of both and improve 

generating ability [2]. However, as the output characteristics 
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of DGs in a micro-grid are quite different from the 

conventional energy sources and the output of DGs cannot 

predict, a micro-grid should be capable of handling 

unexpected fluctuation and maintaining system reliability. 

Hence, BESS plays an important role for obtaining the 

purpose of power balance and grid frequency support in the 

micro-grid [3]. 

BESS can be used in various aspects of power system as 

one key factor for sustainable energy in many countries. 

Typical distribution uses of BESS are peak load management, 

stabilizing energy production from intermittent generations to 

enhance distributed energy resources integration, and dealing 

with emergency circumstances such as blackout, particular in 

micro-grids. BESS is a technology which may become a 

solution for distribution applications if costs reduce and 

regulators allow these kinds of uses. In many countries such as 

France, it has been presented that BESS be implemented in 

three tiers. Two of these, at the residential and low volt grid 

levels, will facilitate the injection of large amounts of 

distributed solar PV energy into the distribution grid. A third 

tier of BESS will support in the area of reliability. 

At the residential level, BESS will be installed in the homes 

of clients who take part in the illustration and have installed 

solar PV panels on their roofs. Each BESS will be located at 

the client’s electrical panel, while the solar PV equipment will 

be located at the grid. A dedicated platform using asymmetric 

digital subscriber line infrastructure will control the operation 

of these residential BESS units and power usage of individual 

clients. Every two minutes, the smart meter will send client 

power consumption and generation data to the control box in 

the actual time [4]. 

In the case of small disturbance, BESS is discharging when 

the system frequency is lower than 50 or 60 Hz. On the other 

hand, BESS is charging when the system frequency is higher 

than 50 or 60 Hz. In the case of large disturbance, BESS can 

enhance the performance of the system frequency control by 

integrating BESS with under frequency load shedding scheme, 

or under frequency generation trip, and over frequency 

generation trip. With these different functions, BESS can 

offer a good solution. It can be concluded that BESS is a rapid 

and flexible element for power system [5]-[8]. Moreover, the 

purpose of optimal BESS is to smoothen the power in a 

system with wind or solar energy. In such a system, BESS can 

play a role by absorbing the surplus power and compensating 

the power shortage due to the uncertainties of renewable 

energy.  

The optimal size of BESS is an important aspect to 

maximize the benefits of BESS in the micro-grid. The 
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inappropriate size of BESS can cause low or over frequency 

and voltage to the micro-grid system [9], [10]. Moreover, 

there is no clearly suggestion for choosing the optimal 

location of BESS in a micro-grid system [11]. Hence, it is 

essential to consider an appropriate size and location of BESS 

to the micro-grid system in order to improve system 

performance, power quality and reliability. 

There are many optimization techniques which can be used 

for determining the optimal BESS size. The optimization 

method can be achieved by means of linear programming 

method, enumerative method, iterative algorithm, Artificial 

Neural Network (ANN) [12]-[16], particle swarm 

optimization (PSO) and so on [17]-[20].  

This study aims at comparing the performance of artificial 

intelligence approaches for determining the BESS size in the 

micro-grid system. PSO and ANN are selected to be a 

candidate for comparison in terms of accurate performance 

and time of calculation. This remain of this paper is organized 

as follow. The micro-grid system that studied and 

implemented is introduced in Section II. BESS size 

optimization approaches are briefly described in Section III. 

The simulation results and analysis are shown in Section IV. 

Finally, Section V concludes the work.  

 

II. PROCEDURE FOR PAPER SUBMISSION 

A. Architecture of Micro-grid 

A Micro-grid, depicted as a subset of the grid which can be 

isolated (e.g., at the level of a college or campus), is able to 

provide all/part of a customer’s load during an outage or in 

case of grid emergencies. The customer may not beck-feed 

into the grid or supply third-party loads during outage 

conditions, due to safety and liability concerns. A typical 

characteristic of a micro-grid is that it can be operated either 

in grid-connected mode or stand-alone mode. Under normal 

operation, the micro-grid is connected to the utility grid.  
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Fig. 1. Micro-grid structure. 

 

Fig. 1 shows the proposed micro-grid system which 

consists of a 1.2 MW mini-hydro generator, 2 MW hydro 

generator and 3 MW solar PV. BESS is connected to the 

micro-grid system at bus 14. Each DG unit has its own local 

controller to handle the relevant electrical variables. The 

system also consists of group of feeders which could be part 

of the distribution system. The critical load 1 with the peak 

power 1.85 MW and the critical load 4 with the peak power 

1.90 MW require a local generation and the non-critical load 

2, 3, 5 with the peak power 1.70 MW, 1.75 MW, 2.40 MW 

respectively are not connected to any local generation.  

B. Solar Photovoltaic Generation 

The output power of solar photovoltaic (PV) generation is 

uncertain as it is mostly affected by the environmental factors, 

namely the environmental random changes will inevitably 

lead to constantly changing of output power of solar PV [21]. 

In order to represent solar PV characteristic in operating 

conditions, the influences of solar insolation and ambient 

temperature are designed. The temperature effect is 

represented by a temperature coefficient of power Tco (1/c°). 

The inverter efficiency is multiplied by the DC output convert 

DC to AC output as shown in (1). 

 

rate 0( / )(1 ( 25 ))PV PV PV co A inv relP n P G G T T       (1) 

 

where nPV is the number of solar PV modules, Prate PV  is the 

rated PV array electrical power (W), G is the global insolation 

on the solar PV array (W/m
2
), G0 is the standard amount of 

insolation used to rate the capacity of solar PV modules 

(W/m
2
), TA is the ambient temperature, TCO is the temperature 

coefficient of the maximum power of solar PV, ɳrel is the 

relative efficiency of the solar PV modules, ɳinv is the 

efficiency of the inverter. 

C. Battery Energy Storage System (BESS) 

BESS can be utilized in several implementations such as 

peak shaving, real power control and load leveling. This 

paper uses BESS for enhancing the performance of frequency 

control as BESS can provide active power compensation in a 

short period of time. Recently, a huge number of electric 

companies and independent system operators have shown 

growing interest in BESS due to decreasing cost of batteries. 

With the fast development of technologies, BESS is expected 

to be used in several applications including the one proposed 

in this paper.  

In this study, BESS operation during outage conditions is 

strictly limited to supply only loads on the customer’s side, 

not back-feed power into the grid. In fact, when the power 

generated by the micro-grid system is greater than the load 

demand, the surplus power can be stored in BESS for future 

use. On the other hand, when there is any deficiency in the 

power generation of the micro-grid, the stored power can be 

used to supply the load. Thus, this will improve the system 

performance and reliability.  
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Fig. 2. BESS structure. 

 

where, αi  is the firing delay angle of converter i, Ed0 is the 

maximum DC voltage of the batteries, Eb1 is the battery 

overvoltage, Ebt is the terminal of equivalent battery, Eboc is 

the battery open circuit voltage, IBESS is the DC current though 

the battery, PBESS is the active power provided by the batteries, 
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rbt is the connecting resistance, rbs is the battery internal 

resistance, rbp is the self discharge resistance, rb1 is the 

overvoltage resistance, ∆f is the frequency deviation, Xco is 

the commutating reactance, ∆Eco is the DC voltage without 

overlap, Kb is the control loop gain, Tb is the measurement 

device time constant. 

The structure of BESS consists of power converters, 

battery cells and control parts [6], which are shown in Fig. 2. 

From the schematic structure of BESS, the output of DC 

voltage is shown as: 
 

tdo EE


66
                              (2) 

 

where Et is AC voltage between the line to neutral. 
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The equivalent circuit of BESS consists of a converter 

connected to an equivalent battery as shown in Fig. 3. The 

terminal voltage of the equivalent battery can be calculated 

from: 
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According to the equivalent circuit of BESS, the expression 

of DC current flowing into the battery can be expressed as: 
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From the converter circuit analysis, the active and reactive 

powers absorbed by BESS are:  
 

 21 coscos
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The incremental active power is considered in load 

frequency control. So, P-modulation strategy is presented to 

this paper. For P-modulation, α1=- α2= α. Thus; 
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After that, the use of BESS in load frequency control is 

touched by a damping signal ∆Ed.:  
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The ∆f is the beneficial feedback from the power system in 

order to provide a damping effect. Linearizing equations (1) 

to (13), the block diagram of BESS can be shown in Fig. 4.  
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Fig. 4. Linearized BESS model for LFC. 

 

III. BESS SIZE OPTIMIZATION 

A. Optimal BESS Size Based-PSO Approach 

Particle swarm optimization is an algorithm technique for 

searching optimal parameters of complicated search spaces. 

PSO is initiated with a group of random particles to find for 

optimal parameters by updating generations. In each iteration, 

each particle is updated by two values. These values are called 

Pbest and Gbest respectively. Pbest is the best solution acquired 

by each particle itself in all of the previous generations. Gbest 

is the best value obtained by any particle in all previous 

iterations. This value is called the best global solution. Each 

particle updates its position and velocity by using (15) and 

(16).  
 

1 1 1 best 2 2 best( ) ( )i i i iv v c r P x c r G x             (15) 

 

iii xvx   11                               (16) 

 

where  i
th

 is the iteration number, j
th

 is the particle number, vi  

is the velocity of a particle at iteration i
th

, xi is the position of a 
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particle at iteration i
th

, Pbest is the best solution at iteration i
th

, 

Gbest is the best global solution at iteration i
th

, r1 is the random 

number one between 0 and 1, r2 is the random number two 

between 0 and 1 and c1, c2 are the learning factors 

The learning factors have important effects on the 

algorithm convergence rate. Further information for PSO can 

be found in [17]-[20]. In this paper, the number of particles in 

swarm (NP) is 20. The number of iterations (NI) is 30. 

Learning factors are C1 and C2 which equal to 1.49445. The 

inertia weight (w) is 0.7920. 

In this approach, the purpose of objective functions is to 

improve the frequency control of BESS in the micro-grid by 

integrating optimal size of BESS. To minimize the power of 

BESS, the final objective function is chosen and expressed as:  
 

Minimize f1 = λJ1                             (17) 
 

where J1 is the objective function representing the power 

capacity of BESS and λ is the weight associated to this 

function. 

Some of these that needs to satisfied are follows: 
 

  maxmin

BESSBESSBESS PtPP                       (18) 

 

where PBESS(t) is the rated power capacity of BESS, min

BESSP  is 

the allowed minimum rated power capacity and max

BESSP  is the 

allowed maximum rated power capacity of BESS. 
 

  maxmin

BESSBESSBESS CtCC                       (19) 

 

where CBESS(t) is the rated energy capacity of BESS, min

BESSC  is 

the allowed minimum rated energy capacity and max

BESSC  is the 

allowed maximum rated energy capacity of BESS. 
 

  maxmin FtFF                           (20) 

 

where F(t) is the nominal frequency of the micro-grid, Fmin is 

the allowed minimum nominal frequency of the micro-grid 

and Fmax is the allowed maximum nominal frequency of the 

micro-grid. 
 

  maxmin VtVV                            (21) 

 

where V(t) is the nominal voltage of the micro-grid, Vmin is the 

allowed minimum nominal voltage of the micro-grid and Vmax 

is the allowed maximum nominal voltage of the micro-grid. 

Based on Fig. 5, the outline of the whole process of the 

proposed PSO-based optimal size of BESS is shown. 

B. Optimal BESS Size Based-ANN Approach 

Multilayer perceptron, trained by the standard 

back-propagation (BP) leaning algorithm, is known as the 

feed-forward back-propagation neural network. In this paper, 

the multilayer perceptron consists of three layer neurons. It 

shows that one hidden layer is contained and one type of 

activation function is used in the hidden layer. Hence, this 

paper can find the optimal size of BESS to supply the 

micro-grid when the micro-grid is separated from the main 

grid based on the measured voltage and frequency of the 

micro-grid [12]-[16]. As a nonlinear modelling method, the 

multilayer perceptron neural network has nonlinearity quality 

and it can guarantee the accuracy of fitting and there are two 

inputs with one output in this study as shown in Fig. 6.  

where F is the nominal frequency of the micro-grid system 

(Hz.) while V is the nominal voltage of the micro-grid system 

(pu). PBESS means the rated power capacity of BESS (MW). 

The output value of the neural network is initiated by 

transforming a weight total of input based on a transfer 

function. The transfer function is used to convert the activate 

level of a neuron to an output value. In this paper, the 

hyperbolic tangent transfer function (Tanh) is activated 

between the input layer and the output layer as follow: 
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The hyperbolic tangent activation function is categorized in 

the logistic type and the output value saturated between -1 to 

+1.  

First, the output of the hidden layer can be shown as: 
 




















































































V

F

WW

WW

WW

f

g

g

g

jj

Tanh

i
)1(

2

)1(

1

)1(

22

)1(

12

)1(

21

)1(

11

2

1

       (23) 

 

From (23), it can be simplified as:  
 

    T

Tanh VFWfVFg ,, )1(                  (24) 

 

The output of the neural network can be expressed as: 
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Fig. 5. Summarize of the optimal sizing of BESS-based PSO. 
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Fig. 6. Three layers architecture of the proposed neural network for BESS 

size optimization. 

 

    VFgWfVFP TanhBESS ,, )2(                (25) 

 

Finally, the proposed neural network model can be 

expressed as: 
 

     T

TanhTanhBESS VFWfWfVFP ,, )1()2(       (26) 

 

From Table I, the parameter details for the proposed neural 

network are shown and used in the training and the testing 

database. 
 

TABLE I: MULTILAYER PERCEPTRON ANN PARAMETERS 

Parameters Multilayer perceptron ANN 

Goal (MSE) 0.001 

Inputs 2 

Outputs 1 

Hidden layer 1 

Training data 30 

Testing data 4 

Hidden layer neurons 10 

Output layer neurons 1 

Transfer function Tanh 

 

Based on Fig. 7, the outline of the whole process of the 

proposed neural network is demonstrated. It can be seen that 

the mean square error (MSE) is compared between desired 

and actual data where the network will stop when the error 

less than 0.0001. 
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Fig. 7. Summarize of the optimal sizing of BESS-based ANN. 

IV. SIMULATION RESULTS 

This section illustrates the comparison results of the 

optimization techniques between Particle Swarm 

Optimization (PSO) and Artificial Neural Network (ANN) for 

evaluating the optimum size of BESS in the micro-grid 

system.  

A. PSO Results-Based BESS Size Optimization 

Fig. 8 and Table II, respectively, displays the convergence 

rate of the optimal sizing of BESS-based PSO and the 

optimized parameters such as the power capacity of BESS, 

energy capacity of BESS, frequency and voltage of the 

micro-grid. Based on Fig. 8, the PSO algorithm is converged 

to its final state approximately after 15 iterations. It is evident 

that attainment is achieved with Gbest after 15
th

 iterations. The 

slightly attainment is reached with Gbest after 20
th

 iterations. 

However, no difference is observed after 20
th

 iterations. The 

reason for this is that this algorithm is symmetrical around the 

midpoint.  
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Fig. 8. Convergence rate of the optimal size of BESS-based PSO. 

 
TABLE II: OPTIMIZED PARAMETER BASED ON PSO 

PBESS (MW)  Frequency (Hz.) Voltage (pu.) 

3.3401 49.999 0.977 

 

B. ANN Results-Based BESS Size Optimization 

To demonstrate how well the proposed neural network 

model can achieve the nonlinear relationship between power 

capacity of BESS (PBESS) and frequency and voltage of the 

micro-grid, the trained neural network is used to predict the 

power energy of BESS (PBESS) by using the same input data as 

those in the training data set.  
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Fig. 9. Regression analysis between estimated output and measured target. 
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In ANN training results, the outputs (the estimated PBESS) 

can be achieved accordingly. As shown in Fig. 9, the 

corresponding correlation coefficient (R) is 0.99979 which is 

almost equal to 1. Hence, the proposed neural network model 

is of high accuracy.  

From ANN testing results, to illustrate the accuracy of the 

proposed neural network approach, the verification process is 

shown as Fig. 10. It can be seen that the estimated BESS size 

closely follows the pattern of measured BESS size. This 

confirms that the proposed neural network model is high 

accuracy. 
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Fig. 10. Comparison between estimated BESS size and measured BESS size 

based on frequency and voltage of the micro-grid. 

 
TABLE III: MSE ERROR FOR BESS SIZE ESTIMATION 

Performance predictor MSE 

PBESS 0.00045623 

 

The mean square error (MSE) on predicting performance 

shows the learning and generalization error of the normalized 

valued of BESS size (See Table III). This value revealed that 

the proposed neural network were able to accurately predict 

the optimum BESS size. MSE equation can be expressed as: 
 

  
n

ii OTMSE
1

2                        (27) 

 

where Ti is the target vector, Oi is the output vector and n is the 

number of training data or data for each test in the testing data 

set. 

Based on Table IV, the optimal size of BESS is determined 

by the proposed neural network model based on frequency 

and voltage of the micro-grid. 

 
TABLE IV: OPTIMIZED PARAMETER BASED ON ANN 

PBESS (MW) Frequency (Hz.) Voltage (pu.) 

3.3488 50.000 0.977 

 

C. Performance Comparison 

Based on Fig. 11, the peak magnitude of the frequency 

deviation with the BESS-based predefined size reaches 50.3 

Hz and it cannot not recover to the normal state equilibrium 

(i.e., 50 Hz). In case of no BESS, the system frequency 

dropped drastically because the power supply cannot meet the 

load demand. It can be seen in that the performance of system 

frequency is much better when the optimal sizing of 

BESS-based PSO or ANN is applied. It is clearly seen that the 

frequency performance of the optimum size of BESS-based 

ANN nearly follows the same pattern of the optimum size of 

based-PSO in terms of peak deviation and settling time. 

 

 
Fig. 11. Frequency deviation of the micro-grid after islanding. 

 

Besides, the voltage deviation of the micro-grid system is 

shown in Fig. 12. According to this figure, the optimal sizing 

of BESS-based PSO/ANN can remain the same voltage 

deviation as the BESS-based predefined size. In particular, it 

is also seen that the voltage performance of the optimum size 

of BESS-based ANN nearly follows the same pattern of the 

optimum size of based-PSO in terms of peak deviation and 

settling time. In case of no BESS, the system voltage dropped 

drastically because the power supply cannot meet the load 

demand. 

 

 
Fig. 12. Voltage deviation of the micro-grid after islanding. 

 

From Table V, it can be observed that the optimum size of 

BESS-based ANN can closely obtain the same performance 

with the optimum BESS-based PSO. However, the optimal 

size of BESS-based PSO can achieve the lowest size of BESS 

while the performance of the optimal size of BESS-based 

PSO remains the same with the optimal size of BESS-based 

ANN. In particular, it should note that the accuracy of the 

performance of the optimum size of BESS-based ANN can be 

improved further by increasing the number of neurons and 

layers, but the time of calculation will be increased also. In 

terms of time of calculation, the optimum size of BESS-based 

ANN gives the best calculation time with only 11.0 s while the 

optimum size of BESS-based PSO gives the time of 

calculation with 285.0 s. 
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TABLE V: COMPARISON OF OPTIMIZED PARAMETERS 

 

Approach 

PBESS 

(MW) 

Frequency 

(Hz.) 

 

Voltage 

(pu.) 

 

Time of 

calculation 

(sec.) 

PSO 3.3401 49.999 0.977 285 

ANN 3.3488 50.000 0.977 11 

 

V. CONCLUSION 

This paper deals with the comparison of artificial 

intelligent approaches for determining the optimal BESS size 

in the micro-grid system. The BESS size is optimized by the 

artificial intelligence techniques which are PSO and ANN 

with feed forward feedback function. Results obtained from 

each approach are compared in terms of performance and 

time of calculation. As seen in the results, 3.3488 – 3.3401= 

0.0087 MW which means that the optimal size of BESS-based 

PSO can achieve the lowest size of BESS compared to the 

ANN-based optimization. While the performance of the two 

approaches remains the same, the calculation time 

significantly differ. The optimal size of BESS-based ANN 

shows shorter calculation time compared to the optimal size 

of BESS-based PSO (See Table V). Additionally, it can be 

conclude that the sizing of BESS-based PSO method can help 

to guarantee the lowest size of BESS with a reasonable and 

full use of the stand-alone micro-grid system, so that the 

micro-grid system can operate at the optimum conditions with 

optimal size of BESS in terms of investment and reliability 

requirement of the demand load. 
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