
  

 

Abstract—The renewable energy sources (RES) such as 

photovoltaic (PV) are basically DC power sources. In the 

present scenario, the integration of RES to power distribution 

infrastructure necessitates the DC-AC converter. Moreover the 

DC loads in the buildings is ever increasing with the use of CFL, 

LED, refrigerator, TV, fan, air conditioner, laptop, and other 

electronics in workplaces and homes. This forced to introduce 

the internal or external AC-DC converter to tie the DC load to 

AC distribution infrastructure of existing power system. This is 

further adding losses and complexity. This AC-DC converter 

stage can be reduces up to a certain level by DC distribution 

system (DCDS). Secondly the multi voltage rating of RES and 

DC load insists to introduce DC-DC converter in DCDS 

infrastructure. This will further add losses and complexity. In 

this paper a standard voltage level DCDS is proposed to 

minimize the system losses, complexity. To verify the simulated 

results in terms of building load and converter losses, a DCDS 

equipped with different energy sources like solar panel (PV), 

public utility (PU) and battery bank (BB) is compared with 

ACDS. 

 
Index Terms—DC distribution system, DC appliances, 

voltage level, conversion losses, DC Microgrid. 

 

I. INTRODUCTION 

Due to increasing demand and environment concern, the 

integration of renewable energy source (RES) to power 

system is increasing day by day. The RES such as solar, wind 

turbine, fuel cells are intrinsically DC power sources. This 

necessitates the introduction of DC-AC converter at 

generation end, thereby adding conversion losses and 

complexity [1]. Secondly, in last two decays, the continuously 

increments in the development of DC appliances is decreasing 

the building load but insists to introduce AC-DC converter 

and increase the conversion loss and complexity of the system 

[2]. Moreover the DC systems are free from inductance, skin 

effect, dielectric losses, and interference with communication 

system. The absence of inductance in DC system makes 

voltage drop very low. While the absence of skin effect the 

small cross section conductor is required in DC system 

comparing with AC. This reduces the line conductor weight. 
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The DC lines also have very low corona losses. The voltage 

stress in DC system is as follows; 

 

2dc acV V                                  (1) 

 

where dcV is the DC system voltage and acV is the AC system 

voltage. 

According to eq.(1), the DC system has a less potential 

stress over AC system for same voltage. For example if a 

system is designed for 230V AC, it can bear 325V DC without 

any rapture in insulation. This helps to reduce the gap 

between two conductors of the distributed line. The less 

potential stress and weight of conductor reduce the size of the 

tower and insulator. This decreases the cost of the system and 

makes the system more economical. On the other hand due to 

absence of capacitance in the DC systems these are having 

very low charging current and decrease power losses in the 

line. This motivates to re-design the AC system into DC 

system. The DCDS has well known advantages over ACDS in 

terms of requirement of fewer amounts of material, low losses, 

efficiency and cost etc. [3], [4]. The DC power systems 

special applications as telecommunication systems [5], 

electric vehicles, shipboard systems [6], traction [7], [8] has 

been discussed in literature. In [9], the performance of a low 

voltage direct current (LVDC) and 230V AC systems has 

been analyzed by considering line losses, devices internal 

losses, new wire cost and energy consumption cost. In [10], 

three 20V, 230V and 325V DC voltage level has been 

analyzed for residential buildings by considering the public 

utility as a main power source. Additional benefits of DC 

microgrids are that they produce less heat inside the building 

envelope so theses are more efficient.  

A number of studies have done on several issues of 

residential DCDS. The majority of studies have purely 

analytical in nature, involving no demonstrations or 

laboratory measurements. In [11] the potential energy savings 

has been estimated by replacing AC-DC converters with a 

more efficient centralized rectifier (that converts AC power 

coming from the grid to DC) and using DC distribution within 

the house to power DC-internal loads. The author assumed 

70-75% efficiency for AC-DC converters and 90% efficiency 

for the centralized rectifier and accounted for some efficiency 

improvements from switching from AC-powered to 

DC-internal appliances, such as refrigerators. In [12] author 

created a model that compared DC versus AC distribution in a 

residential building with and without an on-site DC power 

source. In addition, in [13] a model has been proposed that 

estimated the costs and energy use of residential power 

distribution for five scenarios, including AC distribution, 
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hybrid AC and DC distribution, and DC distribution for 

various voltage levels. They concluded that for all scenarios 

including DC distribution, energy efficiency and costs were 

improved. It should be mentioned that this study assumed 

high DC voltages (220V-750V) and power conversion 

efficiencies that favored DC distribution. In [14] the 

increasing use of DC-internal home appliances and proposed 

a hybrid DC and AC power system that included energy 

storage and allowed for DC generation from solar cells have 

been proposed. Calculation for the conduction losses within a 

house with DC distribution at different line voltages has been 

done and findings showing that very small efficiency benefits 

can be achieved with DC distribution (depending online 

voltages). Like in [12], recommend DC distribution in 

residential buildings is not recommended in [15], unless 

on-site DC power generation is available. While residential 

demonstration products are currently under discussion, in [16] 

only published demonstration-type project for residential 

buildings have been explored. The researchers constructed a 

mini residential power system with a combination of a 5kW 

PV array, a 2.4kW fuel cell, and a 400W wind turbine as DC 

energy sources supplying direct-DC to 12V and 24V 

DC-internal loads. The authors projected that the use of 

micro-DC distribution systems will be more widespread as the 

share of DC devices increases in the future. The DC voltage 

range for versatile DC system setups can be defined by the 

techno-economic application methods [17] and [18]. The 

proposed method is based on power sharing strategy.  

This paper deals with the voltage standardization of DC 

voltage for buildings. It starts with the discussion of the 

system configuration for both ACDS and DCDS for buildings 

in Section II. Next Section III demonstrates he simulation 

results including the mathematical portions and graphical 

results of the simulated data. The Section IV concludes the 

finding and signification of the paper.  

 

II. SYSTEM CONFIGURATION 

A residential building with DC appliances is shown in Fig. 

1 and Fig. 2 with AC and DC distribution system respectively. 

The building is supplied by the public utility (PU) and solar 

plant (SP) in both cases. The battery bank (BB) and electric 

vehicle (EV) are behave as load and power source in case of 

non-availability of PU, SPV, peak load and higher generation. 

There are total six load rooms in this building. The building 

load is distributed in all the six rooms as shown in Fig. 1 and 

Fig. 2. The electrical specifications of the loads are mention in 

Table I While the efficiency of internal AC-DC converter of 

appliances is mention in Table I. As shown in Table I there are 

voltage ratings variation according to the type of load. 12V 

rating available for very low load, medium load is captured 

under 24V and for very high load like electric cars the voltage 

rating goes up to 96V. The AC-DC efficiency varies from 

78% to 90% according to Table I. It can be noted that higher 

the converter power rating high is the AC-DC efficiency, as 

the highest efficiency 90%, is in the case of hybrid car with 

converter power of rating 3000 Watt and lower efficiency 

78%, is in the case of cell phone with converter power of the 

rating of 4 Watt. 

TABLE I: DESCRIPTION OF APPLIANCES AND AC-DC CONVERTER IN INDIA  

Appliance Name 
Type of 

Supply 

Voltage 

Rating 

(Volt) 

Current 

Rating 

(Ampere) 

Power 

Rating 

(Watt) 

AC-DC 

Converter 

Efficiency 

[19]-[20] 

LED Bulb DC 12 V 0.6 7 0.79 

CFL Bulb DC 12 V 1.0 12 0.79 

Electric Geyser DC 96 V 10.5 1000 0.89 

Sandwich Maker DC 24 V 23.0 550 0.87 

Water Purifier DC 24 V 0.5 11 0.79 

Refrigerator  DC 24 V 3.0 72 0.87 

Coffee Maker DC 12 V 11.0 135 0.87 

Washing Machine DC 24 V 3.0 70 0.86 

Water Pump DC 24 V 14.9 350 0.87 

Vacuum Cleaner DC 12 V 8.0 95 0.87 

Air Conditioner  DC 24 V 33.30 800 0.88 

Hybrid Car DC 96 V 32.0 3000 0.9 

Cell Phone DC 12 V 0.3 4 0.78 

Ceiling Fan DC 12 V 1.70 20 0.83 

Hair Drier DC 24 V 15.0 425 0.87 

TV DC 12 V 2.5 30 0.83 

Computer DC 12 V 14 170 0.87 
 

A. AC Distribution System (ACDS) for Buildings 

In this case, each line has a single voltage level of 230 V 

AC. The DC compatible loads are more efficient than the AC 

compatible load [3]. It is also assumed that each appliance is 

DC compatible which helps to reduce the building load as 

compare to the AC compatible load. Moreover each appliance 

has own internal AC-DC converter to connect with AC line, 

which add further losses. The converters efficiency is as 

mention in Table I. The total power consumption in buildings 

for ACDS (PABC) is the summation of power consumed by 

appliances (PA) and power losses in converters (PC). This 

expression is as below: 

ACB A CP =P +p                                    (2) 

where 

1

n

A aj

j

P P


  and ajP , is the power consumed by jth 

appliance, while the total converter losses (pc) is the addition 

of power consumed in internal converters of appliances (pa,c) 

and source converter (ps,c) as express: 

, ,

1 1

n s

C a cj s ck

j k

p p p

 

                              (3) 

where pa,cj is the power losses in converter. n, total number of 

appliances and s, number of power source or storage in the 

residential building. 

 
Fig. 1. AC distribution system for residential building. 
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III. PROPOSED DC DISTRIBUTION SYSTEM 

In this case, it is also assumed that each appliance is DC 

compatible which helps to reduce the building load as 

compare to the AC compatible load. The selection of the 

cable is based on the ampacity [21]. The main DC bus has 24 

volt voltage level. Moreover one boost DC-DC converter to 

step up the voltage level from 24 volt to 96 volt and supply 

electric car and electric geyser. While to supply the appliance 

of 12 volt, a buck DC-DC converter is connected to tie 24 volt 

to 12 volt DC bus. The appliances of 12 volt such as CFL, 

LED, Computer, TV, etc are directly connected to 12 volt DC 

bus while remaining 24 volt appliances are connect to main 

DC bus of 24 volt as shown in Fig. 2. The total power 

consumption in buildings for DCDS (PDCB) is the summation 

of power consumed by appliances (PA) and power losses in 

DC-DC and AC-DC converters (pC). This expression is as 

below: 

 

1

m
P P pDCB A ck

k
  


                        (4) 

 

where m = 3 the number of converters in DC buildings.  

 

 
Fig. 2. Proposed DC distribution system for residential building. 

 

IV. SIMULATION RESULTS 

To study the dynamic power sharing strategy and 

investigate the system performance, the battery bank (BB), 

solar panel and public utility (PU) hybrid power system for 

residential building is simulated in MATLAB
TM

. The battery 

is configured as 12 cells in series and 12 cells in parallel. The 

1.28 kW plant and 1.56 kW with a 24 volt rated voltage solar 

plant (SP) is consider for DC distribution system (DCDS) and 

AC distribution system (ACDS). The PU is tied to consumer 

portal via AC-DC converter and step down transformer (SST) 

to 24 volt DC bus and 230 volt AC for DCDS and ACDS 

respectively. In both DCDS and ACDS case distribution line 

of power system are considered as lossless.  

The power consumption in the building for ideal, DCDS 

and ACDS case has been shown in Fig. 3. The ideal case 

represents the power consumption in the appliances of the 

building represented by blue star at different instant of the 

curve. The ACDS load consists of power consumed by 

appliances, DC-AC and AC-DC conversion losses in the 

appliances the internal converter and sources converter 

represented by red curve. While the DCDS load includes the 

ideal load and DC-DC boost and buck converters and 

represented by green curve. 

Fig. 3 represents the comparative analysis of power 

consumption in appliances, DCDS and ACDS. The building 

load is supplied by the PV plant during 9:30:00–12:30:00 

time interval. In this interval only refrigerator (24 volt) is 

‗ON‘ mode and BB remain in charging mode while other 

appliance remains in ‗OFF‘ mode. The power consumption in 

DCDS is same as ideal case and the converter losses remain 

zero in this interval as shown in Fig. 6 by green line. The 

power equation for DCDS can be expressed as: 

 

1

n

pv bb aj

j

P P P


                               (5) 

 

On the other hand for ACDS in the same time interval three 

type of converters such as DC-AC for PV Plant, AC-DC for 

BB and appliance internal AC-DC converter remain in ‗ON‘ 

mode and the average power losses is approximately 110 watt 

while the building ideal load is 72 watt. The power equation 

can be expressed as: 

 

, ,

1 1 1

n n s

bb pv aj a cj s ck

j j k

P P P p p

  

 
    
 
 

            (6) 
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Fig. 3. Building load with ideal, ACDS and DCDS. 

 

The power consumption from photovoltaic (PV) and public 

utility (PU) for ACDS and DCDS by red, green and blue, cyan 

color line respectively is shown in Fig. 4. The building is 

supplied by PU for both cases during 24:00 to 2:00 and 21:45 

to 23:00 while PV and BB remain in isolated mode.  
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Fig. 4. Power consumed from PV and PU with DCDS and ACDS. 

 

In ACDS the PU power consists of power consumption in 

appliances and internal converter of the appliances. The 

power equation can be expressed as: 
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,

1

( )

n

pu aj a cj

j

P P p



                           (7) 

 

In DCDS the PU power consists of power consumption in 

appliances, solid state transformer (SST), and buck 24/12volt 

and boost 24/96 volt converter of lines. The power equation 

can be expressed as: 

 

,

1 1

n z

pu aj l cr

j r

P P p

 

                           (8) 

 

The PV output is higher than the building load during 

6:00-6:15, 7:15-7:30, 8:00-13:45, and 17:15-18:00  time 

interval including with the instant 6:45, 14:15, 14:45, 15:15, 

15:45, 16:15, 16:45 and 18:30. The PV plant is take care the 

building load and balance power is injected to BB as shown in 

Fig. 5. The power consumption for ACDS is the combination 

of sources converters including with ideal load and appliances 

converters. The power equation can be expressed as: 

 

, ,

1 1 1

n n s

pv bb aj a cj s ck

j j k

P P P p p

  

                 (9) 

 

The power consumption for DCDS is the combination of 

power consumed in ideal load and power losses in the line 

converters. The power equation can be expressed as: 

 

,

1 1

n z

pv bb aj l cr

j r

P P P p

 

                      (10) 

 

The PV output is less than the building load during 

18:45-19:15 time interval including with the instant 6:30, 

7:00, 7:45, 14:00, 14:30, 15:00, 15:30, 16:00 etc. The 

building load is partially supplied by the BB as shown in Fig. 

5. The power consumption for ACDS is the combination of 

sources converters including with ideal load and appliances 

converters. The power equation can be expressed as: 

 

, ,

1 1 1

n n s

pv bb aj a cj s ck

j j k

P P P p p

  

                (11) 

 

The power equation for DCDS can be expressed as:  

 

,

1 1

n z

pv bb aj l cr

j r

P P P p

 

                       (12) 

 

where bbP  and pvP are the BB power and solar power 

respectively. z and n is the number of appliances and line 

converter respectively. During 2:15-5:45 and 19:30-21:30 

time interval the building load is completely supplied by the 

BB and the power consumed from BB for ACDS, DCDS is 

shown in Fig. 5.  
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Fig. 5. Power consumed from battery bank for ACDS and DCDS. 
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Fig. 6. Conversion losses with ACDS and DCDS. 

 

In this case the power consumed for ACDS from BB 

consist of power consumed by appliance with internal AC-DC 

converter and power loss (pb,c) in AC-DC converter of BB. 

The power equation can be expressed as: 
 

, ,

1 1

n n

bb aj a cj b c

j j

P P p p

 

                       (13) 

 

For the above case the power consumed for DCDS from 

BB consist of power consumed by appliance and power loss 

in DC-DC converter of line. The power equation can be 

expressed as: 
 

,

1 1

n z

bb aj l cr

j r

P P p

 

                          (14) 

 

The converter losses for ideal, DCDS and ACDS by blue, 

green and red line has been shown in Fig. 6. The converter 

losses for ideal system remain zero thought the day. In time 

interval 19:30 to 5:45 the SP output is zero as shown in Fig. 4. 

At 21:45 time instant the battery is not able to take care the 

building load of 1234.76 watt and remain in isolated mode 

while the load is supplied by the PU then DCDS has highest 

conversion losses of 64.758 watt. Moreover for the ACDS, at 

the 15:00 instant the building load of 2629.78 watt is partially 

supplied by the PV and BB has highest converter losses of 

470.78 watt. These losses are the combination of converter 

losses of PV, BB converter and internal converter of 

appliances.  
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Fig. 7. Power consumption in the building in a typical day. 
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Fig. 7, represent the total power consumed in the building 

for ideal, DCDS and ACDS by blue, green and red bar 

respectively for a typical day. Total power loss in the 

converter are represented by the cyan and yellow bar for 

ACDS and DCDS respectively. In the ideal case the total 

power consumption in the building is 46.52 kW. In DCDS and 

ACDS the power consumption is 47.22 kW and 58.61kW. 

The conversion loss in DCDS is 0.71kW while ACDS has 

12.10 kW approximate 17 times higher than the DCDS losses. 

 

V. CONCLUSIONS 

The present paper demonstrates the different 

configurations for both ACDS and DCDS systems. A power 

system strategy based approach is used for the voltage 

standardization. This approach enables development of 

energy efficient economic and flexible LVDC systems and 

voltage standardization. Comparative analysis of ACDS and 

DCDS shows the superiority DCDS system off-course in 

terms of energy saving. Simulation results shows that the 

power consumed in DCDS systems is less than power 

consumed in ACDS system. However converter losses are 

much less in case of DCDS comparative to ACDS system. 
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