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Abstract—In this paper, an output partitioning algorithm is 
proposed to improve the performance of neural network (NN) 
learning. It is assumed that negative interaction among output 
attributes may lower training accuracy when we have only one 
single network to produce all the outputs. Our output 
partitioning algorithm partitions the output space into 
multiple groups according to correlation, with strong 
correlation within each group. After partitioning, each group 
employs a learner to train itself. The training results from each 
group are integrated to produce the final result. According to 
our experimental results, the accuracy of NN is improved. 

Index Terms—Output attributes, partition, correlation, 
interference, neural network. 

I. INTRODUCTION

As a useful machine-learning tool, Neural Network (NN) 
is often employed in solving classification [1] and 
regression problems. Partitioning of the output space is to 
place output attributes in different groups and train each 
group with different sub-networks [2]. In conventional 
neural networks, there is no partitioning of the output space. 
In this paper, it is assumed that there may exist interferences 
among different outputs, leading to the poor performance of 
neural network training. 

Beyond interference, we will also benefit from the 
positive interaction among output attributes, thus promotion. 
Inspired from this observation, a new algorithm for NN 
training is designed. This algorithm aims at reducing 
interference while maximizing the effect of promotion. 
Output attributes are put into different groups with each 
group to be trained individually. To tackle the drawbacks 
such as low accuracy and weak generalization, we introduce 
ensemble learning to integrate the results from different 
groups. 

In the second section, we introduce the CBP network and 
its growing algorithm. In section 3, the sub-network model 
is presented, followed by a detailed presentation of the 
output partitioning algorithm in section 4. Some 
experimental results are presented in section 5. Finally, 
section 6 has the conclusion. 
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II. CONSTRUCTIVE BACK PROPAGATION (CBP) NEURAL
NETWORK ALGORITHM

Constructive Learning Algorithm consist of Dynamic 
Node Creation method [3], Cascade-Correlation [4] as well 
as its variations [5]-[7], Constructive Single-Hidden-Layer 
Network [8] and Constructive Back propagation [9] (CBP). 
CBP is used for our work, a summary of which [9] follows. 

A. Step1. Initialization 
The network is initialized with only random weights and 

connections from the input units to the output units. The 
weight of the initialized network will be trained by 
minimizing the error with the function: ܧ = ∑ ∑ ) − )ଶୀଵୀଵݐ          (1) 

In the formula, P is the number of training sample and K
is the number of output units.  and ݐ   respectively 
stand for the actual output value and desired output value of 
the pth training sample at the kth output units. 

B. Step2. Train a New Hidden Unit 
Add the ith new hidden unit. Connect input units to the 

ith new hidden unit then connect it to the output units. 
Adjust all the weights connected to the new hidden unit with 
the function (minimizing the error): ܧ = ∑ ∑ ൫ܽ൫∑ ݓ + ିଵୀݓ ൯ − ൯ଶ    ୀଵୀଵݐ  (2) 

where a is the activation function. wjk is the connection from 
jth hidden unit to kth output unit with the weights. 

C. Step3. Freeze the New Hidden Unit 
Fix the weights associated with the hidden unit forever. 

D. Step4. Test for Convergence 
If the current number of hidden units is able to solve the 

problem, stop. 
Otherwise, continue with step 2. 

III. SUB-GROUP MODEL OF INPUT ATTRIBUTES

A. Output Partitioning Model 
The output space is partitioned into r sub-groups, with 

each consisting of all the input attributes while generating at 
least one output. 

Thus, formula (1-1) can be transformed into: 

ܧ =  ൫ − ൯ଶݐ
ୀଵ
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= ∑ ൣ∑ భ) − భ)ଶݐ + ∑ మ) − మ)ଶݐ +ௌభାௌమమୀௌభାଵௌభభୀଵୀଵ ⋯ + ∑ ೝ) − ೝ)ଶೝୀௌభାௌమା⋯ାௌೝషభାଵݐ ൧  

= ∑ ∑ ൫భ − భ൯ଶ௦భభୀଵୀଵݐ + ∑ ∑ ൫మ −ௌభାௌమమୀௌభଵୀଵݐమ)ଶ +…+∑ ∑ ൫ೝ − )ೝ൯ଶೝୀௌభାௌమା⋯ାௌೝషభାଵୀଵݐ ଵܵ + ܵଶ + ⋯ + ܵ =  (3)             (ܭ

B. Sub-Network Model 
Sub-NN1, sub-NN2, sub-NNr replace the original network 

after grouping. These sub-networks are trained by CBP. 
Each sub-NN produces only a fraction of the result. And the 
final result is generated by integrating the sub-networks by 
some ensemble learning method. 

Fig. 1. Output attribute sub-network model 

IV. OUTPUT PARTITIONING BASED ON CORRELATION

A. Definitions 
CBP neural networks are very sensitive to the change of 

training time. If training time is too short, the neural 
network won’t be able to produce good result. However, 
long training will result in over fitting and poor bad 
generalization. In this article, the validation set is applied to 
determine the training time [10], [11]. 

A dataset is divided into three sub dataset: a training set is 
used to train the network; a validation set is used to evaluate 
the quality of the network to avoid over fitting during the 
training; finally, a test set is used to evaluate the resultant 
network. In this paper, the size of training, validation and 
test size is 50%, 25% and 25% of the dataset’s total 
available patterns. 

Training error E is mean square error percentage [10]. It 
is used to reduce the number of the coefficients in formula 
(1-1) and dependence on the range of output values. ܧ = 100 ೌೣି ∑ ∑ ) − )ଶୀଵୀଵݐ       (4) 

In the above formula, ௫ and  are the maximum 
and minimum output values in formula (1-1). 

After epoch t, ܧ௧(t) is per pattern’s average error of 
training network. (ݐ)௩ܧ is the corresponding error on 
validation set and it is used to determine the time to stop 
training. Also, ܧ௧(ݐ)  is the test error and is used to 
describe the quality of the network. ܧ௧(t) stands for the 
minimum validation error from the start to epoch t.  ܧ௧(ݐ) = min௧ᇱஸ௧  (5)              (′ݐ)௩ܧ

The relative increase of the validation error over the 

minimum so far is defined as the generalization loss at 
epoch t: (ݐ)ܮܩ = 100( ாೡೌ(௧)ா(௧) − 1)               (6) 

The training will stop if the generalization loss is too high. 
Otherwise, it will result in over fitting. 

A training strip of length m [10] is defined as the 
sequence of m times repeat from n+1 to n+m. Especially, n
is divisible by m. During the training strip, training progress 
is measured by Pm (t): it means how much larger the average 
error is than the minimum. 

ܲ(ݐ) = 1000( ∑ ாೝ൫௧ᇲ൯ᇲ∈షశభ,… ୫୧୬ᇲ∈షసభ,… ாೝ(௧ᇲ) − 1)        (7) 

B. Procedure for Sub-Network Training and Growing 
The picture 4-1 shows the procedure for sub-network 

training and growing. sub-epoch stands for the number of 
epochs for training one neural network. Totale poch 
represents the total number of epochs of growing the whole 
neural network.  

Fig. 2. The produce for growing and training sub-network

C. Correlation Partitioning Algorithm 
The purpose of output partitioning is to take advantage 

the relation among the outputs and to reduce the high 
internal interference. By dividing, we can avoid the internal 
interference. By partitioning, we can make use of the 
potential relationship. Here we propose an output 
partitioning algorithm based on correlation to produce. The 
details of this algorithm are described as follows: 

Step 1: Calculate the correlation of every two output 
attributes. And take the absolute values of the correlation. 

Step 2: List all output attribute pairs in 
descending/ascending orders. 

Step 3: For the two attributes in the same pair, if they 
weren’t grouped in any existing partition, form a new 
partition with these two outputs attributes only. 

Step 4: If these two output attributes have been 
partitioned already, then skip this pair. 

Step 5: If only one of the output attribute has been 
partitioned, the other one should be considered if it can be 
placed into the existing partition in the prescribed order. If 
and only if an incoming output attribute has strong 
correlation with all of the attributes in the partition, it can be 
placed into this partition. Once an attribute is assigned into a 
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partition, the other partitions should not be considered. 
Otherwise form a new partition for it. 

If the correlation coefficient is less than 0.1, it can be 
regarded as having no correlation. 

V. EXPERIMENTAL RESULTS

In this paper, we use the Rprop algorithm for training the 
sub-NNs. The parameters used in the algorithm are 
below: ƞା = 1.2, ƞି = 0.5 , ∆= 0.1, ∆௫= 50 , ∆=1.0݁ − 6. All the units use the sigmoid activation function. 
The experiments were simulated on a Pentium(R) 
Dual-Core E5800. The result of all experiments is the 
average value of results over 20 times. 

A. Glass 
The glass dataset is taken from the UCI machine learning 

repository. Classification error (rate) is regarded as 
judgment standard. It has 9 inputs, 6 outputs and 214 
patterns. This dataset is used to classify glass types. 

TABLE I: GLASS OUTPUT CORRELATION COEFFICIENTS

Output No. 1 2 3 4 5 6

1 1      

2 -0.517** 1     

3 -0.231* -0.256** 1    

4 -0.094 -0.105 -0.047 1   

5 -0.116 -0.129 -0.057 -0.023 1  

6 -0.307** -0.341** -0.152 -0.062 -0.076 1

*. Significantly correlated in level .05 (both sides). 
**. Significantly correlated in level .01 (both sides). 

The average correlation is 0.168. The list of 
descending-correlation-order pairs is: 
{1,2}-{2,6}-{1,6}-{2,3}-{1,3}. The ascending-order list is: 
{1,3}-{2,3}-{1,6}-{2,6}-{1,2}. The corresponding 
partitioning results are {1,2,6}{3}{4}{5} and 
{1,2,3}{4}{5}{6}. 

TABLE II:  EXPERIMENTAL RESULTS OF GLASS
Partition 
result 

Classifica
tion error

Max 
error 

Min 
error 

Std 
deviation

Non-partition
ing 

 41.22 47.17 33.96 4.31 

Full-partitioni
ng 

 36.13 45.28 26.42 4.63 

Ascending 
order 

{1,2,3}{4}
{5}{6} 

32.06 43.40 27.51 3.48 

Descending 
order 

{1,2,6}{3}
{4}{5} 

32.93 38.81 25.50 3.97 

B. Thyroid 
Thyroid is a classification problem and is taken from the 

UCI machine learning repository. This dataset consists of 
7200 patterns with has 21 inputs and 3 outputs.  

TABLE III: THYROID OUTPUT CORRELATION COEFFICIENTS

Output No. 1 2 3 

1 1   

2 -0.037* 1  

3 -0.563** -0.805** 1 

*. Significantly correlated in level .05 (both sides). 
**. Significantly correlated in level .01 (both sides). 

The average correlation is 0.468. The list of 
descending-correlation-order pairs is: {2,3}-{1,3}. The 
ascending-order list is: {1,3}-{2,3}. The corresponding 
partition results are: {1,3}{2} and {2,3}{1}. 

TABLE IV: EXPERIMENTAL RESULTS OF THYROID

Partition 
results 

Classificatio
n error 

Max 
error 

Min 
error

Std 
deviation

Non-partiti
oning  1.86 2.17 1.61 0.16 

Full-partitio
ning  1.89 2.11 1.56 0.15 

Ascending 
order {1,3}{2} 1.72 1.93 1.31 0.22 

Descending 
order {2,3}{1} 2.06 2.33 1.73 0.18 

C. Flare 
Flare is also taken form UCI and is a regression problem. 

So, there is no the classification error any more. We apply 
the test error to judge the network’s performance. It has 24 
inputs, 3 outputs and 1066 patterns. 

TABLE V: FLARE OUTPUT CORRELATION COEFFICIENTS

Output No. 1 2 3 

1 1   

2 0.082 1  

3 0.050 0.472** 1 

*. Significantly correlated in level .05 (both sides). 
**. Significantly correlated in level .01 (both sides). 

TABLE VI: EXPERIMENTAL RESULTS OF FLARE

Partition 
Test 
error 

Max 
error 

Min 
error 

Std 
deviation 

Non-partitioning  0.56 0.68 0.52 0.034 

Full-partitioning  0.55 0.60 0.53 0.015 

Ascending order {2,3}{1} 0.52 0.63 0.51 0.023 

Descending 
order 

{2,3}{1} 0.52 0.63 0.51 0.023 

D. Pollution
This dataset is taken from Carnegie Mellon University. It 

is a regression problem with 6 inputs, 5 outputs and 508 
patterns. 
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TABLE VII: POLLUTION OUTPUT CORRELATION COEFFICIENTS

Output 
No. 1 2 3 4 5 

1 1     

2 -0.12** 1    

3 -0.35** 0.47** 1   

4 -0.33** 0.27** 0.73** 1  

5 -0.43** 0.44** 0.92** 0.61** 1 

*. Significantly correlated in level .05 (both sides). 
**. Significantly correlated in level .01 (both sides). 

The average correlation is 0.467. The list of 
descending-order-correlation pairs is: 
{3,5}-{3,4}-{4,5}-{2,3}. The ascending-order list is: 
{2,3}-{4,5}-{3,4}-{3,5}. The corresponding partition 
results are:{3,4,5}{1}{2} and {2,3}{4,5}{1}. 

TABLE VIII: EXPERIMENTAL RESULTS OF POLLUTION

Partition 
result 

Test 
error 

Max 
error 

Min 
error 

Std 
deviation

Non-partitioning  0.64 0.70 0.56 0.036 

Full-Partitioning  0.62 0.66 0.54 0.029 

Ascending order {2,3}{4,5}{1} 0.60 0.65 0.52 0.039 

Descending 
order {3,4,5}{1}{2} 0.61 0.68 0.55 0.033 

VI. CONCLUSION

This paper presented a new approach to output 
partitioning based on correlation. A problem can be divided 
into several sub-problems where each is responsible for a 
fraction of the outputs. Either for classification or regression, 
the results is inspiring. It is easy to understand. If there is 
strong correlation between two outputs, it means that there 
exist similarities between the two outputs. By training two 
strongly correlated outputs together, we can simplify the 
original problem. Also, if there exists no correlation 
between the outputs, it may imply that each of the outputs is 

difficult to distinguish from one another. Partitioning can 
also help resolve internal interference [12] inherent inside 
large networks.  
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