
  
Abstract—This paper presents a new output partitioning 

approach with the advantages of constructive learning and 
output parallelism. Classification error is used to guide the 
partitioning process so that several smaller sub-dimensional 
data sets are divided from the original data set. When training 
each sub- dimensional data set in parallel, the smaller 
constructively trained sub-network uses the whole input vector 
and produces a portion of the final output vector where each 
class is represented by one unit. Three classification data sets 
are used to test the validity of this algorithm, while the results 
show that this method is feasible. 
 

Index Terms—Constructive learning algorithm, output 
partitioning, parallel growing, output interference 
 

I. INTRODUCTION 

Neural networks [1]-[3], evolutionary algorithms [4], 
fuzzy logic [5], [6] and other methods have been proposed 
to tackle classification problems. Among them, neural 
networks based solutions have attracted much attention and 
become one of the most popular techniques for 
classification. 

However, when neural-network is applied to real-world 
classification problems, it still suffers from some drawbacks, 
especially when used in large-scale problems. Internal 
interference exists during the training process [7], whenever 
updating the weights of hidden units the influence from two 
or more output units due to clash in their weight-updating 
directions[1]. 

The strategy “divide-and-conquer” is applied. The 
internal interference among outputs can be reduced by 
dividing the original problem into several sub-problems. 
However, several important issues are raised: how to divide 
the original problem into several smaller and simpler 
problems, how to assign a network module to learn each of 
the sub-problem, how to combine the individual modules 
into the solution to the original task. Up to now, there are 
several approaches to tackle these issues: functional 
modularity [8], domain decomposition, class decomposition 
[9], [10] and state decomposition [11]. 

At the same time, parallel training has also been used to 
gain faster training. By training several sub networks at the 
same time, the time spent on training can be greatly reduced 
[1]. 
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For our work, we applied the output partitioning approach. 
A data set to be classified can be partitioned into several 
smaller sub-dimensional data sets with distinct classes. Each 
sub-dimensional data set is then handled by a smaller sub-
network using the whole input vector as input and 
producing a portion of the final output vector. This method 
reduces computational time and improves performance. 

In Section II, we briefly recall the constructive learning 
algorithm. The concept of output partitioning is described in 
Section III. The proposed partitioning algorithm is then 
described in Section IV. In Section V, experiments based on 
partitioning are implemented with results analyzed. Finally, 
the conclusions are presented in Section VI. 

 

II. CONSTRUCTIVE BACKPROPAGATION (CBP) NEURAL 
NETWORK ALGORITHM 

Constructive Learning Algorithm consists of Dynamic 
Node Creation method [12], Cascade-Correlation [13] as 
well as its variations [14]-[16], Constructive Single-Hidden-
Layer Network [17] and Constructive Backpropagation [16] 
(CBP) and etc. For our work, CBP is used. 

 

III. SUB-GROUP MODEL OF INPUT ATTRIBUTES 

A. Output Attribute Group Model 
All of the output attributes are partitioned into r sub-

group containing at least one output: 

ܧ =  ൫ − ൯ଶݐ
ୀଵ


ୀଵ  
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Especially, E1, E2, …Er are independent from each other. 
And the sum of them must be less than Eth. 

B. Sub-Network Model 
Sub-NN1, sub-NN2,…sub-NNr replace the original 

network after grouping. These sub-networks are trained by 
CBP network. Each sub-NN produces only a portion of the 
result while the final result is generated by integrating the 
sub-networks by ensemble learning method. 
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Fig. 1. Output attribute sub-network model 

 

IV. PARTITIONING ALGORITHM BASED ON OUTPUT 
ATTRIBUTES 

A. Definition 
CBP neural networks are very sensitive to the change of 

training time. If training time is too short, the neural 
network won’t be able to produce good result. However, 
long training will result in overfitting and poor bad 
generalization. In this article, the validation set is applied to 
determine the training time [18], [19]. 

A dataset is divided into three sub dataset: a training set is 
used to train the network; a validation set is used to evaluate 
the quality of the network to avoid overfitting during the 
training; finally, a test set is used to evaluate the resultant 
network. In this paper, the size of training, validation and 
test size is 50%, 25% and 25% of the dataset’s total 
available patterns. 

Training error E is mean square error percentage [18]. It 
is used to reduce the number of the coefficients in formula 
(1) and dependence on the range of output values. ܧ = 100 ೌೣି ∑ ∑ ) − )ଶୀଵୀଵݐ             (2) 

In the above formula, ௫  and   are the maximum 
and minimum output values in formula (1-1).  ܧ௧ (t) is per pattern’s average error of trainingnetwork 
upon epoch t. ܧ௩(ݐ)  is the corresponding error on 
validation set and is used to determine the time to stop 
training. ܧ௧(ݐ) is the test error, used to describe the quality 
of the network. ܧ௧(t) stands for the minimum validation 
error from the start to epoch t. ܧ௧(ݐ) = min௧ᇱஸ௧                                                          (3)                         (′ݐ)௩ܧ

The relative increase of the validation error over the 
minimum so far is defined as the generalization loss at 
epoch t: (ݐ)ܮܩ = 100( ாೡೌ(௧)ா(௧) − 1)                       (4) 

Training will stop if the generalization loss is too high. 
Otherwise, it will result in overfitting. A training strip of 
length m [18] is defined as the sequence of m times 
repeating from n+1 to n+m. especially, n can be divided 
exactly by m. During the training strip, training progress is 
measured by Pm(t) which means how much larger the 
average error is than the minimum. 

ܲ(ݐ) = 1000( ∑ ாೝ൫௧ᇲ൯ᇲ∈షశభ,… ୫୧୬ᇲ∈షసభ,… ாೝ(௧ᇲ) − 1)            (5) 

B. Process for Sub-Network Growing and Training 
Fig. 2 shows the procedure for sub-network growing and 

training. 

 
Fig. 2. The process for growing and training sub-networks 

 

V. OUTPUT PARTITIONING ALGORITHM 
When comparing with conventional large neural networks, 

employing several smaller sub-networks for learning tends 
to have lower classification errors as it can reduce the 
internal interference. The classification error is an important 
measurement of NN’s performance. To obtain a lower 
classification error, an output partitioning algorithm, which 
employ several sub-network, was designed. We propose to 
get a near-optimal result via this algorithm. The details are 
presented as follows: 

Step 1: Find the classification error ܥ of each class and 
order them in ascending order as {ܥ, … ,ܥ … ܥ  }, where ܥ ൏ ܥ ൏  , 1< i <K (K is theܥ. To obtain the individualܥ
number of class), all patterns not belong to class i are 
labeled as patterns of class i. A single NN is then used for 
the resulting two-class classification problem. 

Step 2: Find the classification error of the every partition 
{i,j} (1<i<k, i≠j). And record the classification error as ܥ(,). 

Step 3: Judge the interference among every two classes 
according to the equation  

          F=ܥ(,)-(ܥ+ܥ)                          (6) 

Which means that if F is negative the combination of (I, j) 
lower the classification error, vice versa. 

Step 4: Pick up a class A in the sequence obtained in 
step1 and form a partition. If there is no group, create a new 
group and include A in that group. Else, iteratively find a 
group, in which all the contained class has no interference 
with A, and include A in that group. If failed to find such a 
group, build a new group and include that class. Delete A 
from the sequence. 

Step 5: Repeat step4 until all until sequence obtained in 
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step1 is empty. 
 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 
UCI machine learning datasets were used. 

A. Glass 
TABLE I: GLASS INTERFERENCE MATRIX (UNIT %) 

Output NO. 1 2 3 4 5 6 
1 20.28 
2 32.36 34.91 
3 24.25 33.58 8.30 
4 20.1 36.7 9.53 1.04 
5 22.65 34.91 9.91 2.36 0.85 
6 26.23 37.17 16.79 9.25 10.0 9.43

 
Each diagonal element represents the classification errors 

for each individual class while the rest represents the 
classification error of partition (i, j). Numbers in red 
represent results from interference-less pairs. 

 
TABLE  II: GLASS INTERFERENCE TABLE 

Class NO. Classes without interference Classes with interference
1 2,3,4,6 5 
2 1,3,5,6 4 
3 1,2,6 4,5 
4 1,6 2,3,5 
5 2,6 1,3,4 

6 1,2,3,4,5  
 

TABLE III: EXPERIMENTAL RESULTS OF GLASS (UNIT %) 
 Partition result Classification error

Non-partitioning 
Full-partitioning 
Ascending order 
Descending order 
Yinan Qi’s[20] 
Random partitioning 

 
{1}{2}{3}{4}{5}{6} 
{2,1,6,3}{4,5} 
{5,6}{4,1}{3,2} 
{2,6,1}{3}{4}{5} 
{3,4}{2,6,5}{1} 

41.22 
36.13 
34.05 
32.25 
32.93 
36.15 

Random partitioning means no strategy and order is applied. 

According to the classification errors for individual 
classes, we can obtain two kinds of ordering: ascending and 
descending order. The ascending order is 2-1-6-3-4-5. The 
descending order is 5-4-3-6-1-2. So, we can get two 
different group by using the two orders: {2,1,6,3}{4}{5} 
and {5,6}{4,1}{3,2}. 

B. Vowel 
TABLE IV: VOWEL INTERFERENCE TABLE 

Class Number Classes without interference Classes with interference

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

3,9,10 
3,4,5,11 
1,2,8,9,11 
2,6,7,8,9,11 
2,6,7,8,9,11 
4,5,8,11 
4,5,8,9,10,11 
3,4,5,6,7,9,10,11 
1,3,4,5,7,8,10,11 
1,7,8,9,11 
2,3,4,5,6,7,8,9,10 

2,4,5,6,7,8,11 
1,6,7,8,9,10 
4,5,6,7,10 
1,3,5,10 
1, 3,4 ,10 
1,2,3,7,9,10 
1,2,3,6 
1,2, 
2,6 
2,3,4,5,6 
1 

 

TABLE V:  VOWEL INTERFERENCE MATRIX (UNIT %) 

 
 

TABLE VI: EXPERIMENTAL RESULTS OF VOWEL (UNIT %) 

 Partition result  Classifica
tion error 

Non-partitioning  34.73 
Full-partitioning  24.39 
Ascending order {6,11,5,8}{9,7,4}{2}{10,1}{3} 17.73 
Descending order {1,3,2}{10,8,7,11,9}{4,6}{5} 16.45 
Yi’nan Qi [20] {6,3,2,11,9}{10,1,8}{4,7}{5} 18.57 
Random 
partitioning {6,7,1,9}{4,8}{5,2,10,3}{11} 28.31 

 
Random partitioning means no specific strategy and/or 

ordering is applied. 

C. Thyroid 
TABLE VII:  INTERFERENCE MATRIX (UNIT %) 

Class NO. 1 2 3 

1 1.58   

2 1.89 1.83  

3 1.90 1.98 1.72 
 

Apparently, all the three outputs don’t interference with 
one another. This means non-partitioning i.e. {1,2,3}. 

 
TABLE VIII: EXPERIMENTAL RESULTS OF THYROID (UNIT %) 

 Partition result  Classification error 
Non-partitioning  1.86 
Full-partitioning  1.89 
Qi Yinan[20] {2}{1,3} 1.72 
Random partitioning {3}{1,2} 1.88 

 
Random partitioning means no strategy and/or ordering is 

applied. 
 

VII. CONCLUSION 
This paper presented a new approach for growing and 
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training of neural network. By partitioning the output space, 
the performance of neural network is improved due to 
reduced interference. According to the experimental results 
of Glass and Vowel, this algorithm is better than full-
partitioning, non-partitioning and the result from Yinan Qi 
et al [8]. We didn't get a good result for Thyroid and the 
possible reason is the small output number. However, the 
strategy would likely work on datasets with higher 
dimensions. 
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