

Abstract—This paper presents a new output partitioning

approach with the advantages of constructive learning and
output parallelism. Classification error is used to guide the
partitioning process so that several smaller sub-dimensional
data sets are divided from the original data set. When training
each sub- dimensional data set in parallel, the smaller
constructively trained sub-network uses the whole input vector
and produces a portion of the final output vector where each
class is represented by one unit. Three classification data sets
are used to test the validity of this algorithm, while the results
show that this method is feasible.

Index Terms—Constructive learning algorithm, output
partitioning, parallel growing, output interference

I. INTRODUCTION

Neural networks [1]-[3], evolutionary algorithms [4],
fuzzy logic [5], [6] and other methods have been proposed
to tackle classification problems. Among them, neural
networks based solutions have attracted much attention and
become one of the most popular techniques for
classification.

However, when neural-network is applied to real-world
classification problems, it still suffers from some drawbacks,
especially when used in large-scale problems. Internal
interference exists during the training process [7], whenever
updating the weights of hidden units the influence from two
or more output units due to clash in their weight-updating
directions[1].

The strategy “divide-and-conquer” is applied. The
internal interference among outputs can be reduced by
dividing the original problem into several sub-problems.
However, several important issues are raised: how to divide
the original problem into several smaller and simpler
problems, how to assign a network module to learn each of
the sub-problem, how to combine the individual modules
into the solution to the original task. Up to now, there are
several approaches to tackle these issues: functional
modularity [8], domain decomposition, class decomposition
[9], [10] and state decomposition [11].

At the same time, parallel training has also been used to
gain faster training. By training several sub networks at the
same time, the time spent on training can be greatly reduced
[1].

Manuscript received December 28, 2012; revised February 22. 2013. This research
is supported by the National Natural Science Foundation of China under Grant
61070085.

Shang Yang and Sheng-Uei Guanare are with the School of Electronic &
Information Engineering, Xi’an Jiaotong University, Xi’an, China (e-mail:
Steven.Guan@xjtlu.edu.cn)

Weifan Li and Linfan Zhao are with the Dept. of Computer Science and Software
Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China

For our work, we applied the output partitioning approach.
A data set to be classified can be partitioned into several
smaller sub-dimensional data sets with distinct classes. Each
sub-dimensional data set is then handled by a smaller sub-
network using the whole input vector as input and
producing a portion of the final output vector. This method
reduces computational time and improves performance.

In Section II, we briefly recall the constructive learning
algorithm. The concept of output partitioning is described in
Section III. The proposed partitioning algorithm is then
described in Section IV. In Section V, experiments based on
partitioning are implemented with results analyzed. Finally,
the conclusions are presented in Section VI.

II. CONSTRUCTIVE BACKPROPAGATION (CBP) NEURAL
NETWORK ALGORITHM

Constructive Learning Algorithm consists of Dynamic
Node Creation method [12], Cascade-Correlation [13] as
well as its variations [14]-[16], Constructive Single-Hidden-
Layer Network [17] and Constructive Backpropagation [16]
(CBP) and etc. For our work, CBP is used.

III. SUB-GROUP MODEL OF INPUT ATTRIBUTES

A. Output Attribute Group Model
All of the output attributes are partitioned into r sub-

group containing at least one output:

ܧ = ෍ ෍൫݋௣௞ − ௣௞൯ଶ௄ݐ
௞ୀଵ

௉
௣ୀଵ

= ∑ ൣ∑ ௣௞భ݋) − ௣௞భ)ଶݐ + ∑ ௣௞మ݋) − ௣௞మ)ଶݐ +ௌభାௌమ௞మୀௌభାଵௌభ௞భୀଵ௉௣ୀଵ⋯ + ∑ ௣௞ೝ݋) − ௣௞ೝ)ଶ௄௞ೝୀௌభାௌమା⋯ାௌೝషభାଵݐ ൧ = ∑ ∑ ൫݋௣௞భ − ௣௞భ൯ଶ௦భ௞భୀଵ௉௣ୀଵݐ + ∑ ∑ ൫݋௣௞మ −ௌభାௌమ௞మୀௌభଵ௉௣ୀଵݐ௣௞మ)ଶ +…+∑ ∑ ൫݋௣௞ೝ − ௣௞ೝ൯ଶ௄௞ೝୀௌభାௌమା⋯ାௌೝషభାଵ௉௣ୀଵݐ (ଵܵ + ܵଶ + ⋯ + ܵ௥ = (1) (ܭ

Especially, E1, E2, …Er are independent from each other.
And the sum of them must be less than Eth.

B. Sub-Network Model
Sub-NN1, sub-NN2,…sub-NNr replace the original

network after grouping. These sub-networks are trained by
CBP network. Each sub-NN produces only a portion of the
result while the final result is generated by integrating the
sub-networks by ensemble learning method.

Low-Interference Output Partitioning for Neural Network
Training

Shang Yang, Sheng-Uei Guan, Wei Fan Li, and Lin Fan Zhao

331DOI: 10.7763/JOCET.2013.V1.75

Journal of Clean Energy Technologies, Vol. 1, No. 4, October 2013

Fig. 1. Output attribute sub-network model

IV. PARTITIONING ALGORITHM BASED ON OUTPUT
ATTRIBUTES

A. Definition
CBP neural networks are very sensitive to the change of

training time. If training time is too short, the neural
network won’t be able to produce good result. However,
long training will result in overfitting and poor bad
generalization. In this article, the validation set is applied to
determine the training time [18], [19].

A dataset is divided into three sub dataset: a training set is
used to train the network; a validation set is used to evaluate
the quality of the network to avoid overfitting during the
training; finally, a test set is used to evaluate the resultant
network. In this paper, the size of training, validation and
test size is 50%, 25% and 25% of the dataset’s total
available patterns.

Training error E is mean square error percentage [18]. It
is used to reduce the number of the coefficients in formula
(1) and dependence on the range of output values. ܧ = 100 ௢೘ೌೣି௢೘೔೙௄௉ ∑ ∑ ௣௞݋) − ௣௞)ଶ௄௞ୀଵ௉௣ୀଵݐ (2)

In the above formula, ݋௠௔௫ and ݋௠௜௡ are the maximum
and minimum output values in formula (1-1). ܧ௧௥ (t) is per pattern’s average error of trainingnetwork
upon epoch t. ܧ௩௘(ݐ) is the corresponding error on
validation set and is used to determine the time to stop
training. ܧ௧௘(ݐ) is the test error, used to describe the quality
of the network. ܧ௢௣௧(t) stands for the minimum validation
error from the start to epoch t. ܧ௢௣௧(ݐ) = min௧ᇱஸ௧ (3) (′ݐ)௩௔ܧ

The relative increase of the validation error over the
minimum so far is defined as the generalization loss at
epoch t: (ݐ)ܮܩ = 100(ாೡೌ(௧)ா೚೛೟(௧) − 1) (4)

Training will stop if the generalization loss is too high.
Otherwise, it will result in overfitting. A training strip of
length m [18] is defined as the sequence of m times
repeating from n+1 to n+m. especially, n can be divided
exactly by m. During the training strip, training progress is
measured by Pm(t) which means how much larger the
average error is than the minimum.

௠ܲ(ݐ) = 1000(∑ ா೟ೝ൫௧ᇲ൯೟ᇲ∈೟ష೘శభ,…೟௠ ୫୧୬೟ᇲ∈೟ష೘సభ,…೟ ா೟ೝ(௧ᇲ) − 1) (5)

B. Process for Sub-Network Growing and Training
Fig. 2 shows the procedure for sub-network growing and

training.

Fig. 2. The process for growing and training sub-networks

V. OUTPUT PARTITIONING ALGORITHM
When comparing with conventional large neural networks,

employing several smaller sub-networks for learning tends
to have lower classification errors as it can reduce the
internal interference. The classification error is an important
measurement of NN’s performance. To obtain a lower
classification error, an output partitioning algorithm, which
employ several sub-network, was designed. We propose to
get a near-optimal result via this algorithm. The details are
presented as follows:

Step 1: Find the classification error ܥ௜ of each class and
order them in ascending order as {ܥ௔, … ,௕ܥ … ௖ܥ }, where ܥ௔ ൏ ௕ܥ ൏ ௜, 1< i <K (K is theܥ௖. To obtain the individualܥ
number of class), all patterns not belong to class i are
labeled as patterns of class i. A single NN is then used for
the resulting two-class classification problem.

Step 2: Find the classification error of the every partition
{i,j} (1<i<k, i≠j). And record the classification error as ܥ(௜,௝).

Step 3: Judge the interference among every two classes
according to the equation

 F=ܥ(௜,௝)-(ܥ௜+ܥ௝) (6)

Which means that if F is negative the combination of (I, j)
lower the classification error, vice versa.

Step 4: Pick up a class A in the sequence obtained in
step1 and form a partition. If there is no group, create a new
group and include A in that group. Else, iteratively find a
group, in which all the contained class has no interference
with A, and include A in that group. If failed to find such a
group, build a new group and include that class. Delete A
from the sequence.

Step 5: Repeat step4 until all until sequence obtained in

332

Journal of Clean Energy Technologies, Vol. 1, No. 4, October 2013

step1 is empty.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
UCI machine learning datasets were used.

A. Glass
TABLE I: GLASS INTERFERENCE MATRIX (UNIT %)

Output NO. 1 2 3 4 5 6
1 20.28
2 32.36 34.91
3 24.25 33.58 8.30
4 20.1 36.7 9.53 1.04
5 22.65 34.91 9.91 2.36 0.85
6 26.23 37.17 16.79 9.25 10.0 9.43

Each diagonal element represents the classification errors

for each individual class while the rest represents the
classification error of partition (i, j). Numbers in red
represent results from interference-less pairs.

TABLE II: GLASS INTERFERENCE TABLE

Class NO. Classes without interference Classes with interference
1 2,3,4,6 5
2 1,3,5,6 4
3 1,2,6 4,5
4 1,6 2,3,5
5 2,6 1,3,4

6 1,2,3,4,5

TABLE III: EXPERIMENTAL RESULTS OF GLASS (UNIT %)
 Partition result Classification error

Non-partitioning
Full-partitioning
Ascending order
Descending order
Yinan Qi’s[20]
Random partitioning

{1}{2}{3}{4}{5}{6}
{2,1,6,3}{4,5}
{5,6}{4,1}{3,2}
{2,6,1}{3}{4}{5}
{3,4}{2,6,5}{1}

41.22
36.13
34.05
32.25
32.93
36.15

Random partitioning means no strategy and order is applied.

According to the classification errors for individual
classes, we can obtain two kinds of ordering: ascending and
descending order. The ascending order is 2-1-6-3-4-5. The
descending order is 5-4-3-6-1-2. So, we can get two
different group by using the two orders: {2,1,6,3}{4}{5}
and {5,6}{4,1}{3,2}.

B. Vowel
TABLE IV: VOWEL INTERFERENCE TABLE

Class Number Classes without interference Classes with interference

1
2
3
4
5
6
7
8
9
10
11

3,9,10
3,4,5,11
1,2,8,9,11
2,6,7,8,9,11
2,6,7,8,9,11
4,5,8,11
4,5,8,9,10,11
3,4,5,6,7,9,10,11
1,3,4,5,7,8,10,11
1,7,8,9,11
2,3,4,5,6,7,8,9,10

2,4,5,6,7,8,11
1,6,7,8,9,10
4,5,6,7,10
1,3,5,10
1, 3,4 ,10
1,2,3,7,9,10
1,2,3,6
1,2,
2,6
2,3,4,5,6
1

TABLE V: VOWEL INTERFERENCE MATRIX (UNIT %)

TABLE VI: EXPERIMENTAL RESULTS OF VOWEL (UNIT %)

 Partition result Classifica
tion error

Non-partitioning 34.73
Full-partitioning 24.39
Ascending order {6,11,5,8}{9,7,4}{2}{10,1}{3} 17.73
Descending order {1,3,2}{10,8,7,11,9}{4,6}{5} 16.45
Yi’nan Qi [20] {6,3,2,11,9}{10,1,8}{4,7}{5} 18.57
Random
partitioning {6,7,1,9}{4,8}{5,2,10,3}{11} 28.31

Random partitioning means no specific strategy and/or

ordering is applied.

C. Thyroid
TABLE VII: INTERFERENCE MATRIX (UNIT %)

Class NO. 1 2 3

1 1.58

2 1.89 1.83

3 1.90 1.98 1.72

Apparently, all the three outputs don’t interference with
one another. This means non-partitioning i.e. {1,2,3}.

TABLE VIII: EXPERIMENTAL RESULTS OF THYROID (UNIT %)

 Partition result Classification error
Non-partitioning 1.86
Full-partitioning 1.89
Qi Yinan[20] {2}{1,3} 1.72
Random partitioning {3}{1,2} 1.88

Random partitioning means no strategy and/or ordering is

applied.

VII. CONCLUSION
This paper presented a new approach for growing and

333

Journal of Clean Energy Technologies, Vol. 1, No. 4, October 2013

training of neural network. By partitioning the output space,
the performance of neural network is improved due to
reduced interference. According to the experimental results
of Glass and Vowel, this algorithm is better than full-
partitioning, non-partitioning and the result from Yinan Qi
et al [8]. We didn't get a good result for Thyroid and the
possible reason is the small output number. However, the
strategy would likely work on datasets with higher
dimensions.

REFERENCE
[1] S. U. Guan and S. Li, “Parallel Growing and Training of Neural

Networks Using Output Parallelism,” IEEE Trans ON Neural
Networks, vol. 13, no. 3, May 2002

[2] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, “Efficient
classification for multiclass problems using modular neural networks,”
IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 117–124, 1995.

[3] E. C. Paz, “Markov chain models of parallel genetic algorithms,”
IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 216–226, 2000.

[4] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithm to
evolve rule sets for classification,” in Proc. 1st IEEE Conf. on
Evolutionary Computation, Orlando, FL, 1994, pp. 120–124.

[5] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation
of fuzzy classifier systems for multidimensional pattern classification
problems,” IEEE Trans. Syst., Man, Cybern., pt. Part B, vol. 29, no. 5,
pp. 601–618, 1999.

[6] M. Setnes and H. Roubos, “GA-fuzzy modeling and classification:
complexity and performance,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5,
pp. 509–522, 2000

[7] R. A. Jacobs, M. I. Jordan et al., Adaptive mixtures of local experts,
Neural Comput., vol. 3, no. 1, pp. 79–87, 1991.

[8] R. E. Jenkins and B. P. Yuhas, “A simplified neural network
solutionthrough problem decomposition: The case of the truck
backer-upper,” IEEE Trans. Neural Networks, vol. 4, pp. 718–720,
July 1993.

[9] B. L. Lu and M. Ito, “Task decomposition and module combination
based on class relations: A modular neural network for pattern
classification,” IEEE Trans. Neural Networks, vol. 10, pp. 1244–1256,
Sept. 1999.

[10] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, “Efficient
classification for multiclass problems using modular neural networks,”
IEEE Trans. Neural Networks, vol. 6, pp. 117–124, Jan. 1995.

[11] V. Petridis and A. Kehagias, Predictive Modular Neural Network:
Applications to Time Series, Boston, MA: Kluwer, 1998.

[12] T. Ash, “Dynamic node creation in back propagation networks,”
Connection Sci., vol. 1, 1989, pp. 365–375.

[13] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” Advances in Neural Information Processing systems,
vol. 2, 1990, San Mateo, CA: Morgan Kaufmann, pp. 524–532.

[14] L. Prechelt, “Investigation of the CasCor family of learning
algorithms,” Neural Networks, vol. 10, no.1997, pp. 885–896.

[15] S. Sjogaard, “Generalization in cascade-correlation networks,” in
Proc. IEEE Signal Processing Workshop, 1992, pp. 59–68.

[16] S. U. Guan and S. Li, “An approach to parallel growing and training
of neural networks,” in Proc. 2000 IEEE Int. Symp. Intell.Signal
Processing Commun. Syst.(ISPACS2000), Honolulu, HI.

[17] D. Y. Yeung, “A neural network approach to constructive induction,”
in Proc. 8th Int. Workshop Machine Learning, Evanston, IL, 1991.

[18] L. Prechelt, A set of neural network benchmark problems and
benchmarking rules, Technical Report 21/94, Department of
Informatics, University of Karlsruhe, Germany, 1994.

[19] L. Rechelt, “Investigation of the CasCor family of learning
algorithms,” Neural Networks, vol. 10, no. 5, pp. 885–896, 1997.

[20] S. U. Guan and Y. Qi, “Output partitioning of neural networks,”
Neurocomputing, vol. 68, 2005, pp.38–53.

[21] M. Lehtokangas, “Modeling with constructive backpropagation,”
Neural Networks, vol. 12, 1999, pp. 707–716.

[22] J. Ang, S. Guan, K. C. Tan et al., “Interference-less neural network
training,” Neurocomputing, vol. 71, no.16-18, pp. 3509-3524, 2008.

[23] M. H. Li, Based on the low interference the integration study method
of neural network, Shanxi: Xi’an Jiaotong University, 2012.

Sheng-Uei Guan received his M.Sc. & Ph.D. from
the University of North Carolina at Chapel Hill. He is
currently a professor in the computer science and
software engineering department at Xi'an Jiaotong-
Liverpool University (XJTLU). He is also affiliated
with Xi’an Jiaotong University as an adjunct faculty
staff. Before joining XJTLU, he was a professor and
chair in intelligent systems at Brunel University, UK.

334

Journal of Clean Energy Technologies, Vol. 1, No. 4, October 2013

