
  

  
Abstract—In this study, we propose a Sliding Mode Control 

(SMC) with a state predictor for time delay control systems. 
Time delay is a factor that causes instability in systems, and 
SMC is weakened by time delay. Therefore, we use a state 
predictor with SMC. State predictors are easily designed, and 
are suitable in combination with SMCs using the state of the 
plant as a controller. We have successfully realized control 
using a SMC with a state predictor for the plant with the time 
delay. In addition, we have confirmed the robustness of the 
proposed method. The proposed method shows the effective 
result compared with the conventional method in the 
simulation. 
 

Index Terms—Time delay, sliding mode control, State 
predictor.  
 

I. INTRODUCTION 
The theory of a Sliding Mode Control (SMC) is based on 

the concept of changing the structure of a controller in 
response to the changing state of a system with the aim of 
obtaining a desired response. A high-speed switching control 
action is used to switch between different structures, and the 
trajectory of the system is forced to move along a chosen 
manifold in the state space, called the switching surface. 
Therefore, the behavior of the closed loop system is 
determined by the sliding surface [1]-[3]. In addition, SMC is 
a nonlinear robust control that attempts to stabilize the system 
by limiting the state to a switching hyperplane. One of its 
features is excellent robustness to disturbances and the 
uncertainties that fulfill the matching condition. 

However, according to the principle of SMC, the 
oscillatory phenomenon called chattering is produced 
because the existence of a time delay might influence the 
high-speed switch of the control input, which limits the state 
to the switching hyperplane [4]. 

When SMC is applied to an actual system, the state of the 
system causes oscillations such as high-frequency vibrations 
and spill-over near the switching hyperplane when chattering 
occurs, and might lead to the deterioration of the controller. 

In this study, we design a state predictor and use SMC to 
determine the predicted states of the system. A state predictor 
can be easily designed because we only have to add a 
predictor to the conventional observer. 

This paper is organized as follows: In section II, we 
describe the design of the system in this study. In section III, 
the servo system is designed, allowing the state to follow a 
reference signal. In section IV, we describe the design of the 
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SMC. In section V, we explain the state predictor. In section 
VI, we present the entire design as a proposed method. In 
section VII, we compare the simulation results of the 
proposed method and conventional method, and we confirm 
the robustness of SMC with the state predictor. Finally, 
section VIII concludes the paper. 

 

II. STATE SPACE REPRESENTATION OF CONTROLLED 
SYSTEM 

In this section, the transfer function of the plant G(s) is 

( )
( )

( ) .

Ls

Ls
p

bG s e
s s a
G s e

−

−

=
+

=
 (2.1)

1 1×∈L  is the time delay and 1 1, ×∈a b  is the plant 

parameter. 1 1×∈e  is an exponential function, and ( )pG s  is 

the system not including the time delay. The transfer function 
is rewritten in state space representation for the designing of 
the controller as 
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1 1( ) ×∈y t  is an output from the plant. In this section, the 
time delay exists at the input side of the plant, and the plant is 
a single-input single-output (SISO) system. ( )x t  is a state 

vector, and 1 1( ) ×∈u t  is an input variable. 
 

III. DESIGN OF SERVO SYSTEM 
A state space is designed by a spreading system as 
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let 
( ) ( ( ) ( ))= −∫z t r t y t dt  
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( ) ( ) ( )z t r t y t= −  
1 1( ) ×∈r t  is a reference variable. (3.1) is called the servo- 

system. 
The feedback gain 1F  and servo gain 2F  represent the 

relative importance of the state variation and control energy 
consumption, respectively, and are given by the optimal 
control method as  
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where 3 3×∈Qe  is a positive definite symmetric matrix, and 
0≥er . If the optimal state feedback gain 1F  and servo gain 

2F , which minimize the performance index J in (3.2), are 

rewritten as [ ]1 2=F F F , F  is given by 

1 T
e e er −= −F B P                                  (3.3) 

where 1 3×∈F , 1 2
1

×∈F , and 1 1
2

×∈F . 
The matrix Pe  is the solution of the revised Riccati 

equation, and is given as  
1T T

e e e e e e e e e er −+ − + =P A A P P B B P Q 0                    (3.4) 

where 3 3×∈Pe  [5]-[8]. 
 

IV. SLIDING MODE CONTROL 

Sliding mode control is expressed as 
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1 1( ) ×σ ∈t  is the switching surface and 1 2×∈S  is the 
switching matrix. 

A. Design of Switching Matrix 
First, to realize control using a sliding mode controller, we 

are required to design a switching matrix S . S  is 
determined by solving the Riccati equation by employing a 
method that uses the system’s zero- point. The Riccati 
equation is given as 

1T T
S S S S S Sr −+ − + =* *P A A P P B B P Q 0        (4.1a) 

where 
1 1, 0×= + ε ε ∈ ≥*A A I                (4.2a) 
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Using this method, 1( )−− +S I A BS BTs  becomes strict 
positive realness, so that its zero is stable [6]. 

B. Design of Sliding Mode Controller 
The control input u(t) consists of a linear input 1 1( ) ×∈lu t  

and nonlinear- input 1 1( ) ×∈nlu t . That is, 

( ) ( ) ( )= +l nlu t u t u t                             (4.1b) 
( )lu t  is designed as a control system of equal value, i.e., 

( ) 1( ) ( )−= − SB SAxlu t t                     (4.2b) 

( )nlu t  is designed as a nonlinear control input as 
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1 1×∈K is a gain of the nonlinear input. 

C. Prevention of the Chattering Phenomenon 
If a nonlinear control input is designed using (4.3b), a 

chattering phenomenon occurs. When ( ) 0σ =t  for ( )nlu t , 
( )σ t  in the denominator becomes 0, and quick switching of 

the input occurs. This phenomenon is called chattering, 
which is a high-frequency vibrations. To avoid this problem, 
(4.3b) is written as 
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where 1 1×∈η , 0>η . (4.1c) becomes a smooth function 
and the chattering phenomenon can be relieved [9]-[14]. 
 

V. STATE PREDICTOR 
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Fig. 1. Block diagram of the state predictor. 

 
Fig. 1 shows the block diagram of the state predictor. Pole 

placements and optimal control problems for the system with 
the delay time at the input and output, can be easily settled by 
using predictive states. A state predictor is designed as 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))= + − + −x Ax B Lot t u t L y t y t        (5.1) 
ˆˆ( ) ( )= Cxy t t                       (5.2) 

 ˆ( ) ( ) ( ) ( ( ) ( ))p p pt t u t y t y t= + + −x Ax B L        (5.3) 

where 2 1ˆ (t) ×∈x is the observer state and 2 1( ) ×∈xp t  is 

the predicted state. 2 1×∈L ,Lo p  are predictor gains and are 
satisfied with 
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( )=L Φ Lp oL                               (5.4) 

2 2( ) ×∈Φ t  is a transition matrix of (5.1). i.e., 

( ) = AΦ tt e                              (5.5) 

Lo  is required to be the same the observer gain. i.e., 

1( )−= +L CP C CP AT T
o o o or                 (5.5) 

2 2×∈Po  is given by Riccati equation as 

1T T
o o o o o or −+ − + =P A A P P B B P Q 0          (5.6) 

where 2 2 1 1,× ×∈ ∈Qo or . 
(5.1) represents an ordinary observer, and (5.3) represents 

a predictor that is driven by the state observation error. 
Together with (5.2) and (5.3), it is called a state predictor 
[15]. 
 

VI. PROPOSED METHOD 
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Fig. 2. Block diagram of the proposed method. 

 
Fig. 2 shows the block diagram of the proposed method. 

1 1( ) ×∈D t is an input side disturbance. We use a vector 

[ ] 1 20 ×∈I  because SMC requires states of the plant 
model; however, output of the plant model is not required. 
The output is required by servo system. 

 

VII. SIMULATION RESULTS 
In this study, the transfer function is defined as 
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We choose the parameters optionally as 
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From (7.2), the feedback gain 1F  and servo gain 2F  can 

be calculated by 

[ ]
[ ]

1 2

21.2275 454.1353 9.4868 ,

F=

=

F F
                (7.3) 

And the switching matrix S is calculated by 

[ ]5.0754 15.0547=S                      (7.4) 

Finally, the predictor gain Lo  is 

[ ]87.3142 1.2305 T
o =L                (7.5) 

Fig. 3 shows the simulation results of the sliding mode 
control with a state predictor for the time delay control 
system. In Fig. 3, a unit step is introduced at time t = 0.0 [sec] 
as r(t). An input side disturbance D(t) = - 0.1 is introduced at 
time t = 3.0 [sec]. 
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Fig. 3. Simulation results for the proposed method. 
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Fig. 4. Comparison between the proposed method and conventional method. 
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Fig. 5. Robustness of the proposed method. 
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Next, we compare the proposed method with conventional 
method. The conventional method consists of the plant, 
observer, and servo system, but the predictor is not included. 
Fig. 4 shows the comparison of simulation results of the 
proposed method with conventional method. 

Finally, we have confirmed the robustness of the proposed 
method. SMC is known as being robust, but the added state 
predictor is unknown. We rewrite G(s) as ( )eG s , and ( )eG s  
is defined as 

0.04339.6( ) ,
( 10.78 )

1.5,

−=
+ ×

=

e
m

m

G s e
s s e

e
                    (7.6) 

where 1 1×∈me  is the modeling error. The state predictor 
parameters ( , , , )A B C L  are the same as (7.2). Fig.5 shows 
the robustness of the proposed method. 
 

VIII. CONCLUSION 
In this study, we have controlled a plant with time delay 

using SMC with a state predictor. Simulation results show 
that the proposed method is improved when compared with 
the conventional method, and we have confirmed that the 
proposed method is effective for an input side disturbance. 

Furthermore, we have confirmed the robustness, which is 
one of the characteristics of SMC when we add a state 
predictor. 
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