
  

 

Abstract—We investigated the biogas production potential of 

dairy cattle manure obtained from the Fort Hare Dairy Farm, 

Eastern Cape Province of South Africa. A balloon type digester 

was charged with slurry of manure and operated under 

anaerobic digestion mode for six months. Fifty milliliters of 

slurry was withdrawn at different time intervals to analyze the 

microbial counts and physicochemical parameters by viable 

plate count method and standard methods, respectively. Data 

demonstrated that the pH and temperature ranged from 

5.68-7.63 and 17.0 -25.04 oC, respectively. The total aerobic and 

anaerobic bacteria counts ranged from1.0 ×104-7.5×106 and 4 

×102-1.8×106 cfu/g, respectively, as well as the total yeast counts 

ranged from 2x102- 1.0×106cfu/g. A linear regression model was 

developed that predicted the relationship between log total 

bacteria count and average slurry temperature, pH and days of 

digestion. The 11.2% TS, 61.5% VS and 32.5 % ash content of 

the manure indicated that the dairy manure constituted of 

biodegradable portion. Biogas (4600cm3) was produced during 

digestion and was combustible after 120 days. Thus, we 

concluded that dairy manure harbors a considerable level of 

anaerobic bacteria and methanogens that participated 

effectively to degrade the organic portion of manure generating 

renewable energy. 

 

Index Terms—Anaerobic digestion, balloon digester, biogas, 

dairy manure, microbial count.  

 

I. INTRODUCTION 

Livestock practices generate copious quantities of animal 

manure that warrants proper management. Consequently, 

there is a need for prompt intervention for proper disposal and 

management of these wastes in a bid to evade the adverse 

environmental and public health consequences (e.g. pathogen 

contamination, odor, air borne ammonia, green house gases 

etc) [1]. Interestingly, anaerobic digestion of animal manure 

in biogas digester has shown promise as a technology that will 

generate biogas, a renewable energy source that could be used 

for heating and other purposes and in addition aids in the 

proper management of these wastes by reducing the microbial 

load [2]. 

Furthermore, digestion of dairy manure through the 

anaerobic process entails the breakdown of organic matter 

contained therein by the concerted interplay of four sets of 

metabolically linked microbes via the hydrolytic, acidogenic, 
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acetogenic and methanogenic stages to yield methane, carbon 

dioxide and other trace gases [3]. Overall, organic waste 

materials constitute of sufficient quantities of nutrients vital 

for the growth and metabolism of the anaerobic bacteria 

involved in biogas production [4]. Apart, from these bacteria, 

protozoa and fungi are the other groups of microorganisms 

that are present in animal manure [5].  

Traditionally, at the Fort Hare Dairy Farm, the animal 

manure is being flushed with water into a lagoon located some 

distances from the farm for storage and treatment. However, 

this creates a nuisance to the environment due to the fact that 

the lagoon is uncovered and the stored manure generates and 

releases methane and carbon dioxide into the atmosphere [6]. 

These green house gases contribute in global warming [7]. In 

addition, the air around and close to the vicinity is polluted 

with malodorous compounds resulting from the incomplete 

breakdown of the organic fraction in the manure by the 

indigenous rumen microorganisms under uncontrolled 

environment. Therefore, the installation and implementation 

of a biodigester on the farm and utilization of the dairy waste 

as a feedstock to recover biogas will be a cheaper source of 

energy as well as a good waste management option.  

Regardless of the fact that animal manure has been 

employed in biogas production through mono or co-digestion 

studies elsewhere [8]-[11], however, the biogas potential 

varies with the chemical composition, microbial and 

biological availability of the nutrients present in animal 

wastes. Concisely, the weather and soil characteristics might 

influence the physicochemical characteristics of these wastes 

as well as the species of animal, dietary sources, health status 

of the animals and factors affecting growth and age of the 

animals [5], [12].  

In this paper, we investigated the biogas production 

potential of dairy manure obtained from the Fort Hare Dairy 

Farm, Eastern Cape Province of South Africa by monitoring 

the physicochemical parameters and microbial level of the 

digesting substrate throughout the anaerobic digestion 

process in a balloon type digester operating in a batch mode 

under mesophilic temperature condition. In addition, a model 

was developed to elucidate the relationship between the 

bacterial activity, pH and temperature and also to predict 

biogas yield in future studies. 

 

II. MATERIALS AND METHODS 

A. Raw Anaerobic Digestion Material (Dairy Cattle 

Manure) 

A total of 1700L of fresh dairy cow manure was obtained 

Investigation into the Biogas Production Potential of Dairy 

Cattle Manure 

Christy E. Manyi-Loh, Sampson N. Mamphweli, Edson L. Meyer, Anthony I. Okoh, Golden Makaka, 

and Michael Simon, Member, CBEES 

Journal of Clean Energy Technologies, Vol. 3, No. 5, September 2015

326DOI: 10.7763/JOCET.2015.V3.217



  

from the Fort Hare Dairy Farm, Alice on three consecutive 

days and were referred to as samples A, B and C. The 

characteristics of the wastes are presented in Table 1.The 

study was conducted from October 2013 to April 2014, at the 

Fort Hare Institute of Technology Research Centre, Alice 

campus. 

 
TABLE 1: CHARACTERISTICS OF SAMPLES A, B AND C EMPLOYED IN 

FEEDING 

Parameters Sample A  Sample B Sample C Mean 

%moisture 

content 

86.6 89.3 90.4 88.8 

%Total solids 13.4 10.7 9.6 11.2 

%Volatile solids 72 47.8 64.6 61.5 

%ash content 29.8 32.3 35.4 32.5 

Ammonium  level 

(mg/ml) 

2.1 2.3 2.2 2.2 

pH 6.3 6.95 6.46 6.57 

 

B. Experimental Set up and Sampling 

A balloon digester was housed within a concrete structure 

(8m
3
) constructed originally into three compartments: feeding 

tank of height 83cm , width 89cm and length 95cm; bioreactor 

tank of height 3.25m and width 2m and lastly, the effluent 

tank (Fig. 1). The balloon digester was charged on three 

consecutive days with a homogenous mixture of dairy cow 

manure and water in the ratio 1:1. The mixing ratio of waste to 

water for the preparation of the slurry was determined by the 

moisture content of the waste [13]. The physicochemical 

parameters (pH, moisture, %TS, %VS, ammonium level 

and % ash content) of undigested wastes were determined 

before the slurry was prepared. The digester operated under 

batch mode over a six month period. Samples were withdrawn 

every three, seven and fourteen day interval for the analysis of 

microbial load while the pH and temperature were monitored 

daily throughout the study. 

 
Fig. 1. Layout of the designed and constructed and balloon digester with the data acquisition system incorporated into the full schematic diagram. 

 

C. Physicochemical Analysis of Slurry Samples 

1) Determination of ammonium level of sample 

Ammonium level was determined according to the method 

described by Ziganshin et al. [14]. Slurry samples were each 

centrifuged at 20,000xg for 20mins and the supernatant was 

decanted and colored with Nessler’s reagent. The absorbance 

of the colored solutions was measured at 425nm wavelength 

by Hexios, Thermo Spectronics (Merck, Darmstadt, Germany) 

spectrophotometer and calculations were done considering 

that the standard (ammonia solution) had a concentration of 

0.909g/mL. Also, distilled water was used as a blank to nullify 

the absorbance of water in both the samples and standard. 

2) Determination of moisture content of samples  

As per the method of Cioabla et al. [15], samples were 

weighed in a dish and dried in an oven at 105
o
C overnight. 

The weight of the dried sample plus dish was noted and the 

percentage moisture content was calculated by this equation; 

 

% moisture content= (m2-m1)-(m3-m1) / (m2-m1); 100      (1) 

 

where m1= mass in grams of the empty dish, m2= mass in 

grams of sample plus the empty dish before drying, m3= mass 

in grams of sample plus empty dish after drying. 

3) Determination of dry matter (total solids) 

Percentage of total solids was determined according to the 

method of Asam et al. [16]. A known weight of sample (WS) 

in a dish was dried at 105
o
C in an oven for 24h. After drying, 

the weight of sample was measured and recorded as WDM. 

Percentage of total solids was calculated as follows: 

 

% total solids= 100 × WDM / WS                     (2) 

 

4) Determination of volatile solid Content and ash 

content 

Following the determination of total solids, the overnight 

dried sample was combusted in a muffle furnace at 550
o
C for 

1h. The weight of the ash plus the dish was taken and 

percentage of volatile solid was then calculated from the 

formula: 

 

% volatile solid= 100 × (WDM - Wash)/ WDM            (3) 

 

Furthermore, the percentage of ash content was determined 

from the expression proposed by Cioabla et al. [15] as 

follows: 

 

% ash content= (m3-m1)/m2-m1; 100; 100/100-% moisture (4) 
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where m3= mass in grams of ash plus empty dish, m2 and m1 

are as referred above. 

5) Determination of pH, temperature and biogas 

production 

Daily ambient and slurry temperature were measured by 

four temperature sensors connected externally to a data logger 

(U12, Hobo), configured to log every 30 minute interval. The 

pH was measured by a PHSCAN 30, pH meter. The 

cumulative volume of biogas generated was recorded by a gas 

analyzer. Triplicate determinations were carried out on each 

parameter. 

D. Microbial Analysis of Samples 

1) Bacterial counts 

Total viable count was conducted on undigested and 

withdrawn samples during digestion according to the method 

described by Poudel et al. [17]. Each sample was aseptically 

collected,  introduced into tryptic soy broth medium in sterile 

centrifuge tubes  and transported on ice to the laboratory [18]. 

Samples were analyzed immediately upon arrival at the 

“Applied and Environmental Microbiology Research Group” 

laboratory. Evaluation of the total viable counts was 

conducted  as follows: 1g of each sample was serially diluted 

tenfold in 9mL of sterile physiological saline. Dilutions from 

10
-1

 to 10
-5

 were spread in triplicates on different 

microbiological media, including Nutrient agar (Merck, 

South Africa), Anaerobic agar (Conda, Spain), and Potato 

Dextrose agar (Conda, Spain) to obtain total  aerobic bacteria 

counts, total anaerobic bacteria counts, and total yeast counts, 

respectively.  

All inoculated plates were incubated at 37°C for 24hrs, 

except that the plates for total yeast counts were incubated at 

28
o
C for 4days. After incubation, the number of emergent 

colonies on each plate was counted, recorded and each value 

represented the mean of triplicate plating [19]. 

E. Development and Building of a Mathematical Model 

A linear regression model was developed to predict the 

relationship between slurry temperature, pH, days of 

digestion and log bacterial count (total number of aerobic and 

anaerobic bacteria count). 

F. Statistical Analysis 

The experimental data were processed and analyzed using 

Matlab software (R2013a). 

 

III. RESULTS AND DISCUSSION 

Data on % total solids, total volatile solids, and ash content 

indicated that the cow manure constituted of biodegradable 

portion that could be digested for the release of biogas by the 

microorganisms contained therein [20]. 

At the point of charging, the total aerobic bacteria, 

anaerobic bacteria and yeast counts were high as shown in 

Table II. This affirms the fact that cow manure is a suitable 

substrate of biogas production since rumen microorganisms 

demonstrate significant roles in anaerobic digestion to 

degrade the organic portion of dairy cattle manure [1]. From 

the public health perspective, the total microbial load as 

depicted from the Table II, below revealed that dairy cow 

manure is a highly potential source of both water and soil 

pollution when the manure is not being treated effectively 

before it is released into the environment through soil 

application in agriculture for better crop yield. This poses 

threats to animals and humans as infection is possible since 

modes of transmission become feasible [21]. 

Furthermore, the performance of an anaerobic digester is 

strongly influenced by the pH and temperature of digesting 

substrate [15]. Livestock wastes including dairy manure have 

been reported to have high buffering capacity producing 

alkalinity when degraded upon by the microorganisms [22]. 

Consequently, in this study the pH of the digesting medium 

was unregulated. However, in the first two months of 

digestion (Fig. 2), a decrease in pH of the medium (from 6.57 

at the point of charging to 5.82) was observed which could be 

attributed to the high concentration of volatile fatty acids, 

bicarbonate alkalinity and carbon dioxide; end products of the 

early stages of anaerobic digestion process (hydrolysis & 

acidogenesis [3]. This result corroborates the findings of Li et 

al. [23] and Abubakar and Ismail [1]. As the process 

progresses, the volatile fatty acids were metabolized and the 

pH gradually increased to the sufficient buffering capacity 

(neutral pH) necessary for the production of biogas [23]. 

Moreover, both acidogenic and methanogenic 

microorganisms have their optimal pH for metabolism [11], 

but the methanogens are highly pH sensitive and thrive 

optimally within the pH range of 6.6-7.6 [24]. This explains 

the high flammability rate of the biogas in this study, at pH 

7.45 on the 121
st
 day of the digestion process owing to the 

increase in methanogenic activity of the digester system. 

 

TABLE II: TOTAL MICROBIAL COUNTS BEFORE AND DURING THE 

ANAEROBIC DIGESTION PROCESS 

Days of 

digestion 
TAC TANC TYC 

0 2.7×106 2.3×106 7.9×105 

3 3.6×106 2.0×106 2.6×105 

6 7.0×105 3.0×105 2.0×105 

9 5.0×105 3.0×105 1.1×105 

14 4.4×104 6.9×103 1.7×104 

19 1.8×104 2.0×103 2.5×104 

24 5.5×104 1.0×103 9.3×103 

29 9.0×104 2.6×103 2.0×104 

34 4.0×104 3.3×103 1.6×104 

41 8.5×104 7.0×102 2.2×104 

48 2.1×105 4.0×102 2.0×104 

55 4.8×105 4.1×103 3.0×103 

62 4.5×105 1.1×104 2.5×103 

76 3.0×104 1.0×104 8.0×102 

83 6.6×105 8.0×103 3.3×103 

121 5.0×104 5.0×103 5.0×102 

133 2.6×104 1.3×103 2.1×103 

143 4.5×104 2.8×103 1.3×104 

150 2.3×104 1.6×103 1.5×104 

161 1.5×104 4.5×104 2.5×103 

171 2.3×103 3.5×105 2.3×103 

178 2.3×103 9.8×103 2.4×103 

TAC- Total aerobic bacterial counts; TANC-Total anaerobic bacterial count; 

TYC-Total yeast count. 

 

In addition, the metabolic rate of microorganisms has been 

reported to be influenced by temperature thus it modifies the 

effectiveness of these anaerobic microbes relevant in the 

process of biogas production. Accordingly, the temperature 
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profile was monitored by four temperature sensors; two 

sensors were embedded at different levels in the slurry, one 

was floating in the biogas space and the last was located 

outside the digester (within the concrete housing detecting 

ambient temperature) but all were connected to a Hobo data 

logger for data recording and storage. 

The variation of daily average temperature (slurry) over the 

duration of anaerobic digestion is presented on Fig. 3 and is 

unaffected by the ambient temperature. Generally, it was 

noted that there was combined regimes of psychrophilic 

process (< 20
o
C) for the first two months and mesophilic 

process (>20
o
C < 30

o
C) for the rest of the process (4months) 

[25]. This result is in accordance with the findings of Cioabla 

et al. [15], although they evaluated the factors affecting 

anaerobic digestion of agricultural vegetal residues. 

 

 
Fig. 2. Variation of  pH of substrate during the anaerobic digestion process. 

 

 
Fig. 3. Variation of  temperature (slurry & ambient) during anaerobic 

digestion. 

 
TABLE III: INPUT PARAMETERS AND THE OUTPUT THAT WERE UTILIZED IN 

DEVELOPING THE MULTIPLE LINEAR REGRESSION MODEL 

No. of 

days 

Average slurry 

temperature (oC) 

pH value Log of total 

Bacteria counts 

0 18 6.57 6.12 

3 18.49 5.72 5.80 

6 18.46 5.73 5.85 

9 17.53 5.68 5.70 

4 18.02 5.87 4.64 

19 8.02 5.91 4.26 

24 17 5.4 4.74 

29 18.38 5.94 5.34 

34 18.24 5.9 5.24 

41 18.02 5.88 5.11 

48 18.49 5.9 5.09 

55 18.02 5.87 4.90 

62 18.54 5.82 4.80 

76 20.92 6.48 5.037 

83 21.77 7.3 5.39 

121 24.27 7.45 4.99 

133 21.7 7.5 4.42 

143 22.55 7.62 4.40 

150 18.83 7.51 3.90 

161 25.04 7.55 4.18 

171 21.43 7.56 3.78 

178 20.09 7.56 3.39 

A linear regression model was developed to predict the 

relationship between average slurry temperature, pH, and 

days of digestion and log bacterial counts. These are all the 

parameters that have been reported to influence the 

production of biogas [15]. From Table III, the predictors were 

number of days (n), average slurry temperature (T), and the 

pH while the response was the logarithm of the total bacterial 

counts (Y). The multiple linear regression model is as shown 

in the equation below: 

 

Y = A0 + A1 (n) + A2 (T) + A3 (pH)                 (5) 

 

where A0 = Forcing constant; A1 = Scaling constant of n; A2 = 

Scaling constant of T, A3 = Scaling constant of pH. 

 
TABLE IV: SCALING VALUES OF THE RESPECTIVE SCALING CONSTANT 

Predictor symbol Scaling 

symbol 

Scaling Value Output 

symbol 

constant A0 1.671 Y 

n A1 -0.018  

T A2 0.106  

pH A3 0.383  

 

In addition, the measured log of total bacterial counts and 

the model of log of the total bacterial counts derived from the 

data set of Table I are as shown in Fig. 3. The measured and 

the modeled output were strongly correlated with a 

determination coefficient (r
2
) and a P-value of 0.94 and 0.85, 

respectively. The large r
2
 value showed that the measured Y fit 

the modeled equation and also the P-value depicted that the 

modeled equation has a statistical significance of over 80% in 

agreement to the calculated response. The modeled equation 

coefficients predicted that an increase in average slurry 

temperature and pH could likely result to an increase in the 

logarithm of total bacterial counts. 
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Fig. 3. Shows calculated and modeled log bacterial counts. 
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Fig. 4. ANOVA plot of calculated and modeled bacterial counts. 
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It is evident that temperature increases microbial 

metabolism thereby converting volatile fatty acids into the 

desired end products [6]. Consequently, the concerted 

interplay of these microbes culminated in the production of 

biogas whose cumulative value was 4600cm
3
 at the end of the 

study. However, an increase in the number of days can often 

bring about a drop in the output. This may probably be owing 

to exhaustion of nutrients since anaerobic bacteria needs 

suitable nutrients to thrive in any environment that they are 

kept.  

Furthermore, the one way ANOVA test was performed 

between the measured and modeled log of total bacterial 

counts as illustrated in Fig. 4. The test showed no mean 

significant difference. Moreover, the data set of both the 

measured and modeled output showed a normal distribution 

with no outlier. The mean of both dataset from the ANOVA 

plot was 4.945 and 5.030, respectively. 

 

IV. CONCLUSION 

From the results of this study, it is worth mentioning that 

dairy cattle manure is endowed with a considerable biogas 

production potential evaluated through anaerobic 

decomposition that offers numerous benefits of 

environmental, agricultural and socio-economic standards. 
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