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Abstract—To improve the operating performance of a 

distribution network, on line monitoring is required. For this 

purpose, sensors (metering devices) are installed. To reduce the 

number of sensors, state estimation approach can be used to 

estimate the voltage of buses which do not have sensors. This 

paper proposes online state estimator for three phase active 

distribution networks using Neural Network and displayed the 

results on Geographic Information System (GIS). Neural 

Network based state estimation is used to estimate the bus 

voltages by using learning approach from power flow patterns. 

K-matrix three phase distribution power flow is used in this 

method as an analytical tool. The K-matrix approach is 

combined with Particle Swarm Optimization (PSO) in handling 

a Distributed Generation (DG) which is operated as a voltage 

controlled (PV) bus. The test results show that the proposed 

method can reduce the number of sensors significantly (almost 

50%). 

 

Index Terms— rk, K-matrrix, 

PSO and GIS.  

 

I. INTRODUCTION 

Electrical distribution systems is a part of power systems 

that directly connected to the consumers. In some electrical 

distribution systems, can consist of a huge number of bus. Due 

to this reason, monitoring and controlling the electrical 

distribution system for real time becoming very important to 

improve its operating performance. 

To build this automation systems, huge number of sensor 

are needed to monitor all part in the systems. But if the sensor 

installed at all buses, investment cost become huge. To reduce 

the investment cost, the numbers of installed sensor in the bus 

need to be reduced. To reduce the number of sensors, state 

estimation approach can be used to estimate the voltage of 

buses which do not have sensors. 

The concept of state estimator was first discovered by Fred 

Schweppe on the transmission system. The basic idea of the 

concept is to combine the advantages of measurements using 

an equations system as to find the conditions that may occur 

on the network, resulting the minimization of the error of 

sensor and the delay of sensor readings. Vector estimation in 

transmission systems consists of voltage magnitude and phase 
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angle [1]-[3]. In [4]-[6], they were developed state estimation 

for single phase distribution systems, this concept suitable for 

distribution areas where have balance load system.  

Distribution networks have characteristics such as the 

radial network topology, the high value of R/X. There is a 

lateral system (two-phase and single-phase), and usually have 

unbalanced load system. Newton Raphson power flow and 

fast decouple which is used to analyze the transmission 

system can’t be applied to the distribution system, these 

methods are built on the assumption of balanced three-phase 

system. 

Several methods have been developed to analyze the 

distribution system like FB, loop frame, FFRPF, direct-ZBR, 

these methods have accurate analysis but can’t accommodate 

PV bus. The integration of renewable energy sources into the 

distribution system requires an active distribution power flow 

to analyze a system performance. The three-phase power flow 

sequence component based method (SPF-NR) easily 

accommodates PV bus problems. But SPF-NR cannot 

accommodate lateral system (two-phase network and single 

phase). K-matrix distribution power flow is a combination of 

network topology based methods [7] and direct-ZBR method 

[8]-[12]. K-matrix distribution power flow algorithm is 

simpler thus more accommodating the changes of the network 

structure instead of the previous method. In [10] lambda was 

used to estimate the voltage at some point which is based on 

the results of measurements of the voltage sensor at other 

point measurements. 

Voltage estimation in [11] is continuation of research on 

the integration of renewable energy sources (DG) in 

distribution networks. The operation of the DG as a PV bus, 

voltage magnitude is maintained at a certain scale. To get the 

amount of Volt Var, and optimization is done on the PV bus. 

Meanwhile, to estimate both the voltage magnitude and 

voltage angle is maintained accordingly measurement results. 

Then the optimization is done on the value of Watt and Var on 

the buses to be estimated voltage. Thus no need sensors at 

each bus to know the voltage of all buses in the distribution 

system. The method is robust, but slowness in computational. 

This paper proposes neural network distribution state 

estimation for online monitoring integrated by geographic 

information system (GIS). State estimation is solved using 

learning approach from K-matrix-PSO load flow patterns. 

Neural Network (NN) is an intelligent computing algorithm 

that inspired the workings of nerve cells. All incoming input 

signal is multiplied by the weighting for each input, then 

summed and added to the bias. The sum of the incoming 

activation function of the neuron produces output. NN will be 

trained to power flow results of K-matrix-PSO, as many as 50 

load pattern. The goal is not only improve the accuracy but 
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real time measuring. The advantage of GIS for online 

monitoring; it has two dimension visualization, detailed 

information of location and flexibility analysis. 

 

II. METHODOLOGY 

A. K-Matrik Power Flow 

Submit your manuscript electronically for review. For ease 

of illustration, the simple three phase radial distribution 

system is shown in Fig. 1. There are five bus and bus no 3 as 

PV bus. but for this step PV bus is ignored. In other hand the 

network is passive. The system can be easily analyzed using 

the K - matrix power flow method. 

K - matrix is a square matrix with size  nbranch x (nbus - 

1). nbranch is the number of branches and nbus is the number 

of bus. The principle of K-matrix, are looking  for the route 

from bus to reference (bus 1). K-matrix would be worth-C if 

the branch is located on the opposite lane with reference, C is 

a diagonal matrix (3×3) with diagonal elements are 1 in 

accordance with the number of phase. K-matrix formed Fig. 1 

is expressed in equation (1) as follows: 
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Fig. 1. A simple three phase radial distribution system. 
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(1) 

K-matrix power flow algorithm: 

1. Input load  and  network data 

2. Build K-matrix 

3. Build BCBV matrix, BCBV is negative transpose 

K-matrix multiply with full branch matrix []. 

4. Build DLF matrix, DLF is BCBV multiply with – 

(K-matrix) 

5. Then inflows of at each bus was calculated by equation 

(2) 

( ) ( )( )

( ) ( )

( )

( )

sh sh

l lk

bus l k

bus l

P jQ
I

V


                        (2) 

 

Equation (3) is updated every iteration. Along with the 

update iteration, it is the result of multiplying the voltage 

difference between DLF and 
busI  

k k

bus
V DLFxI                                  (3) 

1k k

bus noloadV V V                            (4) 

Vbus_noload is the voltage at each bus in the initial conditions, 

it is set equal to the reference voltage. 

 

B. K-Matrik –PSO Power Flow for Active Distribution  

When you submit your final version, after your paper has 

been accepted, prepare it in two-column format, including 

figures and tables. K-matrix distribution power flow must be 

combined with optimization algorithm to estimate the Var 

value on PV bus. PSO was chosen in this research considering 

on literature [9]-[21] PSO is robust and simple optimization 

algorithm 

Particle Swarm Optimization (PSO) is heuristic algorithm 

that inspired by swarm of birds looking for food source [22]. 

PSO in K-matrix power flow is used for tuning Var in PV bus 

and keep the voltage constant.  

K-matrix-PSO power flow algorithm: 

1. Input load, line and generation data 

2. Input PSO parameter 

3. Random initialization of Var(Q) for each PV bus. 

4. K-matrix Power Flow 

5. Evaluate the fitness 

6. Getting the best particle (Pbest) and best global particle 

(Pgbest). 

7. Update velocity and Position by equation: 

1

1 1 ( )k k k k

i i i iV V c r x Pbest Xk      

2 2 ( )k k

i ic r x Gbest X                         
(5) 

1 1k k k

i i iX V V                               (6) 

Vi
k
= velocity particle i at k  iteration 

 = weight parameter 

1 2,c c ,= acceleration coefficient 

1 2,r r = random value between  0 until 1 

1

k

ir X = particle position  at  k iteration 

k

iPbest = Pbestparticle i atiterasi k 

k

iGbest =Gbest particle i iterasi k 

8. Check constrains Qmin and Qmax. 
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6. Check if
( 1)k

BusV  are less than a preset tolerance then 

iteration stop. If it more than a preset tolerance back to 

point 5.



  

9. Check stopping criteria, there are two stopping criteria; 

maximum iteration and tolerance. 

C. Neural Network Distribution State Estimator 

Neural Network Distribution State Estimator (NNDSE) is 

designed and tested for real distribution system. It used one of 

feeder in Surabaya Indonesia. There are ten bus, six bus is 

load bus and four bus is no load bus. Sensor was placed on 

two or more bus. 

K-matrix power flow patterns divided training and testing, 

70% data as training and 30% data as testing. In all data use 

50 power low patterns. One hidden layer ten node Neural 

Network back propagation was design.  

Artificial neurons are a processing element that functions 

like neurons in a neural network structure. A number of the 

input signal is multiplied by each corresponding weights. 

Then do the sum of all activation function to get the output 

signal. Suppose there is an input signal and the weights, the 

output function of the neuron is according the following 

equation. 

1( ) 1 1( ... )x w n nF f w x w x                           (7) 

Set of neurons made into a network that will serve as a 

computational tool. The amount of weight between each 

neuron is connected to be determined the network trained 

using a set of sample data. 

is part of stage A and B. magnitude and angle voltage from 50 

load flow pattern from each stage as input and output training 

testing neural network (step 5). This network was used 

distribution state estimation (step 6). Module NDSE will 

export estimation data to database and integrated with GIS to 

show detail information of location and utility. 

 

III. TEST AND DISCUSSIONS 

First step result is validation power flow design with 

commercial software, ETAP. The average different values for 

all design are 0.001. That’s mean that all design of power flow 

are feasible.  

Neural network distribution state estimation was tested for 

following test cases. 

A. Single Phase Distribution Network 

There are ten bus in feeder of kaliasin (Fig. 3). bus no 3, 5, 

Case 1 voltage estimation for bus no 5 and 8 consider three 

input sensor from bus no 3, 6 and 10.  

Case 2 voltage estimation for bus no 5, 6 and 10, sensor 

was placed on bus no 3 and no 8. 

B. Passive Three Phase Distribution Network  

 

was placed on bus no 3 and 8. 

 

 
Fig. 2. Flow chart NN state estimation for active distribution systems. 

 

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 7

Bus 6

Bus 8 Bus 9

20 kV

20 kV

20 kV

20 kV

20 kV

20 kV

20 kV

20 kV

20 kV Bus 

10

20 kV

Fig. 3. Real distribution system, feeder of Kaliasin Surabaya Indonesia. 

C. Active Three Phase Distribution Network  
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Case B is state estimation for three phase distribution 

unbalance network. The data was used is feeder of Kaliasin 

Surabaya Indonesia. Same with Case A but it consist of three 

Case 1 voltage estimation for bus no 5 and consider three 

input sensor from bus no 3, 6 and 10.

Case 2 voltage estimation for bus no 5, 6 and 10, sensor 

Case C is state estimation for three phase active distribution 

network. The data was used is feeder of Kaliasin. Same with 

Case B

Case 1 voltage estimation for bus no 5 and consider three 

input sensor from bus no 3, 6 and 10.

Case 2 voltage estimation for bus no 5, 6 and 10, sensor 

was placed on bus no 3 and 8. Similar result between target

and NNDSE are obtained. The proposed method accurately 

solves. The state estimation is displayed on GIS, it is shown in 

Fig. 4. Normal, under voltage and over voltage condition will 

6, 8 and 10 are load  bus (see Table I).

phase unbalance load (see Table II).

but it addition DG as bus at bus no 3(see Table III). PV 

Complete research step is described in Fig. 2. Step 1 until 4 



  

be known. In Fig. 4 is an example that bus is under voltage. 

magnitude and voltage angel for a node/bus in the systems. 

For the next research will be combined between Neural 

Network and others Artificial Intelligent method to improve 

estimation result. 

 
TABLE I: NN STATE ESTIMATION IN SINGLE PHASE DISTRIBUTION NETWORK 

 Case 1 Case 2 

    Voltage (pu)    Angle Voltage (pu) Angle 

Input 

2V  0.99935 2  −0.0180 
2V  0.99935 2  −0.0180 

5V  0.99920 5  −0.0222 

5V  0.99916 5  −0.0233 

20V  0.99906 20  −0.0253 

Target 

5V  0.99916 5  −0.0222 
5V  0.99920 5  −0.0222 

2V  0.99916 5  −0.0233 
5V  0.99920 5  −0.0222 

20V  0.99096 
20  −0.0253 

NNDES 

5V  0.99937 5  −0.0223 
5V  0.99950 5  −0.0227 

5V  0.99927 5  −0.0238 
5V  0.99970 5  −0.0229 

20V  
0.99916 

20  −0.0260 

Error 

5V  
0.017% 

5     0.45% 
5V  

0.03% 
5     2.25% 

5V  0.011% 5  2.14% 
5V  

0.05% 
5     3.153% 

20V  0.872% 
20     2.77% 

 

 
TABLE II: NN STATE ESTIMATION IN PASSIVE THREE PHASE  DISTRIBUTION NETWORK 

  Phasa A Phasa B Phasa C 

  Voltage (pu) Angle Voltage (pu) Angle Voltage (pu) Angle 

Case 1 

Input 

2V  0.9995 2  −0.0180 
2V  0.9993 2  −120.0197 

2V  0.9992 2  119.9821 

5V  0.9992 5  −0.0222 
5V  0.9989 5  −120.0242 

5V  0.9991 5  119.9778 

20V  0.9990 20  −0.0253 
20V  0.9990 20  −120.0276 

20V  0.9989 20  119.9748 

Target 
5V  0.9994 5  −0.0222 

5V  0.9992 5  −120.0242 
5V  0.9915 5  119.9779 

5V  0.9991 5  −0.0233 
5V  0.9902 5  −120.0255 

5V  0.9903 5  119.9770 

NNDSE 
5V  0.9993 5  −0.0225 

20V  0.9994 5  −120.0280 
5V  0.9925 5  119.9400 

5V  
0.9992 5  −0.0240 

5V  0.9916 5  −120.0600 
5V  0.9908 5  119.9960 

Error 
5V  0.01% 

5   1.35% 5V  0.02% 
5  0.38% 

5V  0.1% 
5  0.006% 

5V  0.01% 
5     3% 5V  0.14% 

5   0.028% 
5V  0.05% 

5  0.015% 

  Case 2 

Input 
2V  0.9993 2  −0.0180 

2V  0.9993 2  −120.0197 
2V  0.9993 2  119.9821 

5V  0.9991 5  −0.0233 
5V  0.9991 5  −120.0255 

5V  0.9991 5  119.9960 

Target 

5V  0.9992 5  −0.0222 
5V  0.9992 5  −120.0280 

5V  0.9992 5  119.9400 

5V  0.9993 5  −0.0222 
5V  0.9992 5  −120.0242 

5V  0.9992 5  119.9778 

20V  0.9909 20  −0.0253 
20V  0.9909 20  −120.0276 

20V  0.9909 20  119.9749 

NNDSE 

5V  0.9994 5  −0.0226 
5V  0.9996 5  −120.0300 

5V  0.9998 5  119.9000 

5V  
0.9995 5  −0.0226 

5V  0.9994 5  −120.0200 
5V  0.9993 5  119.9600 

20V

 0.9910 

20  −0.0251 
20V

 
0.9923 20  −120.0400 

20V

 
0.9920 20  119.9800 

Error 

5V  0.02% 
5     1.8% 5V  0.04% 5   0.001% 

5V  0.06% 
5  0.03% 

5V  0.03% 
5  1.8% 

5V  0.02% 5   0.003% 
5V  0.01% 

5  0.01% 

20V

 

0.01% 
20   0.88% 

20V

 

0.14% 
20  0.01% 

20V

 

0.11% 
20  0.004% 
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Fig. 5 showed the added menu in GIS to display the voltage 
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Phasa A Phasa B Phasa C
Voltage (pu) Angle Voltage (pu) Angle Voltage (pu) Angle

Case 1

Input
𝑉3 1 𝜃3 −0.0721 𝑉3 1 𝜃3 −120.0781 𝑉3 1 𝜃3 119.9237

𝑉6 0.9997 𝜃6 −0.0752 𝑉6 0.9997 𝜃6 −120.0815 𝑉6 0.9996 𝜃6 119.9205
𝑉10 0.9994 𝜃10 −0.0783 𝑉10 0.9994 𝜃10 −120.0848 𝑉10 0.9994 𝜃10 119.9176

Target
𝑉5 0.9997 𝜃5 −0.0752 𝑉5 0.9997 𝜃5 −120.0814 𝑉5 0.9996 𝜃5 119.9206
𝑉8 0.9996 𝜃8 −0.0763 𝑉8 0.9996 𝜃8 −120.0828 𝑉8 0.9995 𝜃8 119.9197

NNDSE
𝑉5 0.9997 𝜃5 −0.0760 𝑉5 0.9997 𝜃5 −120.0700 𝑉5 0.9995 𝜃5 119.3000

𝑉8 0.9997 𝜃8 −0.0770 𝑉8 0.9998 𝜃8 −120.7500 𝑉8 0.9954 𝜃8 119.9400

Error
𝑉5   0.02% 𝜃5 1.06% 𝑉5   0.02% 𝜃5 0.0095% 𝑉5   0.01% 𝜃5   0.52%
𝑉8   0.02% 𝜃8 0.917% 𝑉8 0.01% 𝜃8   0.55% 𝑉8   0.4% 𝜃8   0.017%

Case 2

Input
𝑉3 1 𝜃3 −0.0721 𝑉3 1 𝜃3 −120.0781 𝑉3 1 𝜃3 119.9237
𝑉8 0.9991 𝜃8 −0.0763 𝑉8 0.9991 𝜃8 −120.0828 𝑉8 0.9996 𝜃8 119.9197

Target

𝑉5 0.9997 𝜃5 −0.0752 𝑉5 0.9997 𝜃5 −120.0814 𝑉5 0.9996 𝜃5 119.9206

𝑉6 0.9997 𝜃6 −0.0752 𝑉6 0.9997 𝜃6 −120.0815 𝑉6 0.9996 𝜃6 119.9205

𝑉10 0.9994 𝜃10 −0.0763 𝑉10 0.9994 𝜃10 −120.0848 𝑉10 0.9994 𝜃10 119.9176

NNDSE
𝑉5 0.9997 𝜃5 −0.0752 𝑉5 0.9997 𝜃5 −120.0814 𝑉5 0.9996 𝜃5 119.9206
𝑉6 0.9997 𝜃6 −0.0752 𝑉6 0.9997 𝜃6 −120.0815 𝑉6 0.9996 𝜃6 119.9205
𝑉10 0.9997 𝜃10 −0.0752 𝑉10 0.9994 𝜃10 −120.0848 𝑉10 0.9996 𝜃10 119.9176

Error

𝑉5 0.01% 𝜃5 0.27% 𝑉5 0.03% 𝜃5 0.008% 𝑉5   0.01% 𝜃5   0.008%
𝑉6

0.01%
𝜃6

0.93%
𝑉6

0.01%
𝜃6     

0.0079%
𝑉6

0.01%
𝜃6

   0.0004%
𝑉10 0.01% 𝜃10 0.13% 𝑉10 0.01% 𝜃10     0.012% 𝑉10 0.02% 𝜃10   0.019%

Fig. 4. State estimation displayed in GIS.

Fig. 5. State estimation information.

IV. CONCLUSION

The proposed method which is a new approach to solve for 

active unbalanced distribution networks accurately. The 

simulation results show that proposed method can 

accommodate PV bus. State estimation using neural network 

for all case have error under 4% and reduce sensor almost 

50%.
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