
  

  
Abstract—Design and functional implementation of a 

16-point pipelined FFT architecture is presented. The 
architecture is based on the radix-4 algorithm. By exploiting the 
regularity of the algorithm, butterfly operation and multiplier 
modules were designed. The architecture adopts four butterflies, 
and the pipeline stage is optimized to balance the processing 
speed and the area. It was modeled by VHDL, and synthesized 
in FPGA. By adopting this architecture, the data throughput 
could be 2M/s. It is extensible for high point FFT. 
 

Index Terms—Fast Fourier transform (FFT), modular 
architecture, pipeline, VLSI design.  
 

I. INTRODUCTION 
The fast Fourier transform (FFT) class of algorithms [1] is 

widely used in communication and digital signal processing. 
The FFT algorithm is considered one of the basic algorithms 
in many DSP projects. Nowadays, FFT is the key building 
block for the mobile communications; especially for the 
orthogonal frequency division multiplexing (OFDM) 
transceiver systems [2].Implementation of FFT of different 
architectures, for fast and efficient computational schemes, 
has attracted many researchers. The methodology of FFT 
simulation, implementation, and verification plays a key role 
in the industrial or consumer electronics areas, for example, 
the FFT image or acoustic processing, encoding and 
decoding, harmonic analysis in renewable energy and so on. 
The FFT is a typical computation where the memory access 
intensively and the high parallelism is needed. VLSI 
realization of FFT algorithm, should have pipelined 
architecture and/or parallelism, be regular and modular [3]. 
At algorithm level, it should achieve the multiplicative 
complexity as low as possible. At the architecture level, use 
the delay-feedback buffering strategy to minimize the 
memory size. It should have modular and regular modules, 
local routing, and low control complexity. 

The discrete Fourier transform (DFT) X(k) of an N-point 
sequence x(n) is defined by 
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In (2), the n
NW  is usually referred to as twiddle factor. 
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Selecting an FFT radix is the first step on the algorithmic 
level. It is mainly a trade-off between the speed, power and 
area for the number of transistors. High-radix FFT algorithms, 
such as radix-8, often increase the control complexity and are 
not easy to implement. And to radix-2 FFT, there is the 
increase in the number of butterfly elements compared with 
radix-4. So the radix-4 was selected in this paper. 

To understand the radix-4 FFT algorithm intuitively, we 
can examine the signal flow graph (SFG) as shown in Fig. 1. 
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Fig. 1. Signal flow graph of 16-point radix-4 FFT 
 

We could learn from Fig. 1. that –j terms are extracted. The 
complex multiplication with –j are accomplished by 
exchanging the real and the imaginary parts of the incoming 
data and then inverting the sign of the imaginary part. The 
SFG is also the base for designing a butterfly operation. It 
could be mapped to the architecture shown in Fig. 2. 

The fundamental principle of Cooley and Turkey’s 
algorithm for computation of N-point DFT, is that to 
decompose a given Discrete Fourier Transform (DFT) 
problem into successively smaller DFTs. The algorithm for 
the High Speed Pipelined DIT FFT architecture is based on 
the following equations: 
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The 0
NW , k

NW , k
NW 2 , k

NW 3  also could be extracted and 
listed in Fig. 1. In the hardware implementation, they are 
stored in the RAM with 16-bit fix point. 

 

II. RADIX-4 PIPELINE FFT ARCHITECTURE 

A. Delay Feedback Pipelined Architecture 
There are two main delay buffering strategies of pipelined 

FFT architecture [4], [5] in the butterfly stages. One is 
delay-commutator (DC) architecture, and the other one is 
delay-feedback (DF) architecture. In above two architectures, 
FIFO is used to buffering the intermediate data. For the DC 
architecture, the utilization of each FIFO is 50%. For the DF 
architecture, the utilization of each FIFO is increased to 
100%. The DF strategy is adopted in this implementation as 
shown in Fig. 2. 

There are 4 stages shown in Fig. 2. Every stage has one 
butterfly element. To the butterfly operation, the input data 
and out put data could use the same address, the 
corresponding RAM could be divided into four groups for 
the four butterflies. 
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Fig. 2. Radix-4 pipeline architecture. 

By observing the Radix-4 SFG, every butterfly stage has 
only one or two butterfly modes. They are denotes as BFI and 
BFII here. The BFI mode implements common butterfly 
operation. The BFII not only includes the common butterfly, 
but the butterfly whose input data will be multiplied by –j 
before normal butterfly operation. The overall structure is 
regular and suitable for VLSI implementation. 
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Fig. 3. Repartition scheme for pipeline stage III. 

The butterfly operation and the twiddle factor multiplier 
both select modified-Booth encoding and Wallace tree. To 
the stage III, the latency of a complex multiplication is 
usually twice as long as that of a butterfly operation. So the 
pipeline should be repartitioned to balance the latency. To 
crack this problem, we merged the final adder (Carry Saved 
Adder) and the BFI into one stage. It is shown in Fig. 3. 

B. Memory Design 
There are three different types of memory (RAMs) in the 

architecture, which store the input values of data and 
coefficient, and the output value of the result. The RAM is 
designed to store one full set of data for 16-point FFT 
computation. Both the real and imaginary parts of the data are 
stored in fixed point representation as two different numbers. 
So for a radix-4 butterfly operation we have 4 numbers 
(2-real, 2-imaginary) to be stored and each number is 16-bit 
long. The data can be read serially to be processed in the 
radix computation element [6] [7]. The coefficient RAM and 
the output RAM are similar to the data RAM. The coefficient 
RAM that has 7 bytes denotes all of the twiddle factors listed 
in Fig. 1. 

C. Memory Controllers 
The RAM controller controls the READ and WRITE 

operations with proper address generation logic. The address 
generation unit provides the read pointer, and write pointer. 
The address generation is done using two modulo-4 counters. 
The number of unprocessed data items in the RAM, and 
overflow/underflow memory access, are controlled using an 
up/down counter. Every stage has a buffer，its function is to 
prepare the input data for the next stage. This buffering 
function could also be realized by the memory controllers. 
The counters produce the latency and signal the address 
generator to prepare the data. 

 

III. FUNCTIONAL IMPLEMENTATION 
The architecture proposed in the above section has been 

modeled in hardware description language VHDL with 
generic parameters for transform length and word-length, 
using fixed 16 point architecture. The presented architecture 
is regular and extensive for high point, 32-bit FFT which is 
used in 3D image processing systems.  

 

 
Fig. 4. Test vector generation for source signal with two frequency 

components. 
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The design methodology is from floating point model to 
fixed point model. The Matlab behavior model is established 
as a function model. Its PSNR is analyzed for specific 
applications. Then the hardware C model is established as a 
golden for VHDL verification. Fig. 4 is the test vector 
generation. Fig. 5 is the RTL simulation of the FFT core. It 
could be seen that the two frequency components are 
detected accurately by the FFT core. 

The design flow adopts both top-to-bottom and 
bottom-to-top. In the top-to-bottom, the top level is 
constructed with high priority, such as control modules, data 
path and memory management. In the bottom-to-top, the 
fundamental computation elements are established for the 
more flexible modules construction, such as the adder and 
multiplier combined to establish the complex multiplier. 

 

 
Fig. 5. Simulation of frequency detection by the FFT core. 

The prototype of the presented FFT architecture has been 
fully synthesized by means of Altera FLEX10K 
(EPF10K130EQC240-2) [8]. Experimental results show 
throughput could be 2M/s. 

The area/power consumption in the pipelined architecture 
is dominated by the FIFO register files and the complex 
multiplier. This is also considered as our future research 
direction. 

 

IV. CONCLUSION 
An architecture for pipelined processing 16-point FFT has 

been presented, which is regular and extensible for high point 
FFT. The pipeline performance was enhanced by the 
repartition of the multiplier and butterfly operation. The 

prototype of the architecture has been synthesized and 
verified by FPGA. 
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