
  

  
Abstract—Despite the significant effort spent the efficient and 

reliable delivery of energy to individual households remains an 
unsolved challenge. One of the key roadblocks is the high 
complexity of the smart grid system. In this paper we propose a 
new architecture for the management of the energy flow 
between smart grid and households. The proposed design 
strives to dynamically balance and optimize the amount of 
energy between the grid and the various smart homes. The 
preliminary experimental results show that the proposed design 
can capture the major characteristics of a smart home system, 
and when combined with higher level optimization tools has the 
potential to provide significant energy saving. 
 

Index Terms—Energy management, smart grid systems, 
renewable energy resources, intelligent connector. 
 

I. INTRODUCTION 
For the past fifty years, the electricity grid has been the key 

source of energy for households around world. However, 
ever since, the infrastructure for the energy generation and 
delivery has seen little improvement [1]. Looking forward, 
we face several major roadblocks before we can connect 
renewable resources into the current electricity grid. First, the 
current grid system is dominated by ageing transmission lines, 
transformers, and traditional power plant stations that makes 
the grid very unreliable. Second, it follows an outdated 
one-way grid-to-buildings energy distribution paradigm.  
Third, we receive very little information from the grid itself. 
The power plants collect information through sensors, 
however each house-hold and building have little information 
on their daily usage until monthly bills are received. The 
current grid system suffers from a poor information 
acquisition scheme. Recently, with the development of smart 
meters, appliances, and renewable energy sources, the 
requirements on grids have changed significantly. For 
example, the new renewable energy requires a two-way 
structure that allows energy to flow in and out of the grid 
continuously and with changing amplitude. Most appliances 
are only equipped with local sensors that cannot send their 
data to a central location for analysis (i.e. a central control 
board, a computer, or a community level server). A new real 
time monitoring, sensing, analyzing, and control framework 
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needs to be put in place for a household to be automatic and 
smart. Last, the current electricity grid only regulates the 
supply side (grid side). Once equipped with renewable 
energy resources, the grid is no longer the center of the 
energy system. The energy system becomes a vast network of 
distributed resources. Under this situation, a highly efficient 
grid requires the demand side and supply side being balanced 
at all times. 

 
 

Fig. 1. General architecture for the new smart grid design 
 

This paper discusses a new real time monitoring, sensing, 
analyzing, and control framework that facilitates data flow 
and energy flow management and integrates both power 
electronics hardware and software for smart grid and smart 
buildings. We intend to build a two-way structure that allows 
energy to flow in and out of the grid continuously and with 
changing amplitude. The proposed new smart system design 
strives to balance the demand side and supply side at all times. 
Instead of regulating the supply side (grid side) as in the 
traditional system, we need a two-side regulation scheme: we 
should be able to reconfigure household automatically, as 
well as regulating the grid. Fig. 1 demonstrates the general 
flow of the proposed project. The Intelligent Connector 
(I-Connector) controls the hardware system in the household. 
It receives optimization results from the simulation based 
Optimization with Hierarchical Options (SoHo). The 
Interface Model (I-model) [2], [3] prunes data from sensors 
and smart meters at the households to provide a fast 
optimization framework. The contributions of this paper 
include:  
1) A new smart connector (I-Connector) that allows 

multiple direction energy flow and two-way regulations. 
In addition to the exiting peaking power tracking scheme, 
the proposed smart connector allows reconfigurable 
connection and stable output considering photovoltaic 
(PV) panel output uncertainty.  

2) A new simulation based Optimization with Hierarchical 
Options (SoHo) scheme to schedule multiple buildings 
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from different locations under different solid-state 
transformers (SST). The new development allows the 
users to take advantage of differences such as solar 
intensity, cost per watt, and resource availability at 
multiple locations. This new algorithm decides the 
configurations of components at each household, and is 
applicable to different platforms. 

 

The end result is a prototype system that embeds software 
and hardware automation for smart buildings and smart grid. 
We would like to point out that even though converters, 
inverters, and demand response tools have been released on 
the market, how to build intelligent systems is still an 
unsolved challenge. Through this paper, we intend to provide 
first-hand experiences to illustrate how these systems 
communicate with household hardware, and how these tools 
cope with large volumes of data coming from sensors and 
real time monitoring. The Broader Impact of this research is 
to bridge the gap between existing tools and underlying 
energy physical systems using the cyber 
presentation/interface [4], [5]. Instead of using different 
module to define/model different components (i.e. PV cell, 
wind mills, batteries, appliances, and inverters), an unified 
model for data, energy, and timing is the key solution to 
reduce the complexity of the smart grid design. Such a model 
will allow us to focus on only the key metrics: demand 
response, load balancing, scheduling, and abnormal 
situations due to uncertainties. Our preliminary experimental 
results showed that the Intelligent Connector (I-Connector), 
the proposed Interface Model (I-Model) [2], [3], and the 
simulation based Optimization with Hierarchical Options 
(SoHo) can capture the major characteristics of a smart home 
system, and when combined with higher level optimization 
tools has the potential to provide significant energy saving. 

 

II. I-CONNECTOR FOR HOUSEHOLDS 
Inverters and Converters for PV cells are not new concepts 

or designs. Ever since we had PV cells, we have also 
developed their converters and inverters. However, we would 
like to point out that current industrial and academic inverter 
designs are focused on power electronic circuits and their 
control circuits. Their vision on households is still traditional: 
for a single household, its PV panels and batteries are 
resources for this household ONLY. This is different from 
the reality. It is obvious that once connected to the electricity 
grid, we have a large network of distributed resources (PV 
cells and batteries from multiple buildings) [6]-[8]. The key 
problem becomes how to manage this vast network of PV 
cells and batteries well. This large network of renewable 
resources has the potential to provide significant energy 
savings.  

To further explain this concept, let us consider a 
PV-Inverter-Converter system at a household. Assume the 
maximum power point tracker (MPPT) improves the PV 
output power efficiency by 30%. However, the grid load 
balancing indicates that due to demand decrease, we do not 
need additional electricity at the moment. Then, it is not 
helpful for the electricity generated by the PV to be directly 
ported back to the grid. In other words, in this case the MPPT 
efficiency improvement of 30% becomes irrelevant. 

Coordinated optimization strategies almost always 
overshadow the standalone power saving strategy. There are 
numerous practical examples [9], [10] of demand, supply, 
and load balancing that confirm this scenario. Henceforth, 
there is a strong need of smart inverters and converters that 
not only provide single household solar-electricity 
conversion, but also offer a hardware system that allows 
intelligent collaborations among different users, different 
locations, and communities.  

To facilitate communication and coordination, the 
proposed design directly takes commands from a simulation 
based optimization tool instead of local control circuits. This 
is very different from the existing auxiliary circuits that 
inverters are often equipped with. The operation of the 
auxiliary circuits is not optimized with respect to total power 
and cost. This affects all circuits related to switch mode 
power supply, measuring and protection circuits, and 
microcontrollers. For the rest of this section, we describe a 
new DC-DC converter and its control scheme for the 
proposed I-Connectors. Fig. 1 illustrates that the new 
I-connector combines the functionalities of the inverter, 
converter, regulator, and reconfiguration in one box. It 
includes voltage regulators such as DC-DC regulators and 
DC-AC regulators, a MPP tracker for the PV panels, and a 
microcontroller. Our ultimate goal is that costumers are no 
longer concerned whether the source of energy is from the 
grid or the solar panels; from a customer perspective there 
should be no disconnection in the energy provided even in the 
case there is uncertainty about the availability of solar 
energy. 

Today’s most popular PV cells use multi-crystalline 
silicon based technology. However, under solar “uncertainty”, 
PV cells have rather dramatic changes in their electricity 
production.  Even a small amount of partial shadow may lead 
to de-lamination, power losses, and a very irregular 
voltage-current characteristic. It is a must to have MPPTs 
with decoupling capacitance Cpv to help improve the output 
of the PV cells. To improve the quality of MPPT, we 
investigate the sensitivity of PV output power to the changes 
in voltage and current at the output. This helps to establish the 
interface between PV cells and the DC-DC converter. In all 
cases, we expect wide environment changes, and thus wide 
change in output voltage, current, and power provided by the 
PV cells. In the US, lighting and low-power appliances run at 
120 volts plus or minus 10%; meaning 108 volts to 132 volts 
at 60 Hz. In the prototype system we designed, the 
I-Connector consists of a microcontroller (TMS320C200), a 
bidirectional DC-DC converter, a DC-AC inverter, and an 
MPPT. The interface between the optimizer (software) and 
the smart connector is the load sequence. The sequence 
represents load power consumption in the time domain. The 
load power consumption curve is the input to the power 
electronic system. The load power, the available input PV 
power, and the load scheduling are given as inputs to the 
microcontroller circuit, which control the switches to shift the 
operation modes of the DC-DC converter. The DC-DC 
converter has been designed to produce a regulated output 
voltage of about 170V, which is then fed into the input of the 
DC-AC inverter. The output of the DC-DC converter can also 
be directly connected to DC loads or to the input of another 
DC-DC converter, which sets the value required by the 
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appliances. When there is an excess of energy generated by 
the PV modules, it can be stored in storage devices, which 
can later be used as an input source. Alternatively the excess 
energy can be sold back to the grid. The DC-AC inverter 
ideally produces an output of 110VAC, which is then 
supplied to the loads. The grid also acts as one of the inputs of 
our multiple-input multiple-output (MIMO) physical energy 
management system. Since DC-AC inverters achieves over 
95% efficiency and MPPTs improve PV efficiency to the 
upper limit, the key innovation we focused on is the DC-DC 
converter design. The DC-DC converter is designed both for 
high efficiency and high input swing range. The proposed 
DC-DC converter also provides an effective way to perform 
as a surge protector and as a fast backup source when solar 
uncertainty occurs. Due to the variation of weather conditions, 
the output of the PV modules directly connected to the input 
of the DC-DC converter has a large dynamic range 
(50-350VDC).  The inverter takes about 170VDC to produce 
the steady 110VAC required by the AC powered appliances 
connected at its output.  The DC-DC converter must be able 
to lower down the voltage when it is higher than 170VDC 
(this can be done with a buck converter) and boost up the 
voltage level to 170VDC when the input is lower than the 
required value (this can be done through a boost converter). 
Fig. 2 shows the circuit designed as well as the control 
signals.  

 
Fig. 2. DC-DC converter designed and control signals 

 

III. DEMAND RESPONSE USING SOHO 
Hierarchical Options in SoHo is a tool that helps customers 

from two different locations (e.g. two cities, or two counties) 
to coordinate their schedules to achieve maximum savings. 
Fig. 3 illustrates the flow of SoHo for demand-response 
negotiation. Two customers A and B from two separate 
locations (Location P and Location T) coordinate using SoHo 
through Internet (or other long distance communication 
methods). These two customers may be under two different 
solid-state transformers (block SST [11]). Due to different 
price per watt cost, different solar intensity, and different 
resources available to the two buildings A and B, the SoHo  
provides the best saving schedules for both A and B taking 
advantage of the two locations differences. SoHo is a fast, 
simulation-based optimizer. The objective function is total 
cost of energy. The constraints include load balancing 
constraints from both physical locations under different SSTs, 
supply constraints from sun, task completion time 

requirements, resource (including battery) management 
constraints, and cost upper bounds. The solar intensity 
changes are incorporated into the solar supply constraints. 
SoHo runs in two modes: real time optimization, and 
look-forward optimization. The real time optimization mode 
in general provides hour-by-hour optimized schedules 
assuming constant solar intensity for one hour. The 
look-forward optimization mode uses the solar intensity 
prediction model as nonlinear constraints to provide 
schedules for future usage. If the solar intensity changes 
follow the prediction model, the look-forward optimization 
scheme will be favored over the real time optimization 
scheme. 

 

 
Fig. 3. SoHo demand-response negotiation flow 

 

I-Model and SoHo are new approaches for tackling the 
demand-response research problem characterizing the smart 
grid and smart home infrastructure. With these two 
components, it is possible to implement a hierarchical 
management framework for smart grid. This is to support 
large size communities with thousands of households with 
little concerns on data or information explosion. In addition, 
it is possible to extend the current I-Model work [2], [3] to 
provide automatic model generations for general smart 
appliances, and power electronic systems. In this way, it will 
be possible to provide a dynamic-data-driven, adaptive 
multi-scale simulation (DDDAMS) framework to coordinate 
the management of house-level energy resources and to 
provide a closed loop control for the household. For example, 
inside each home, dynamic data is incorporated into the 
simulation framework. Simulation is launched on servers and 
steers the measurement process for data update and system 
control. An appropriate level of simulation fidelity is selected 
based on the time constraints for evaluating alternative 
control policies and questions addressed by users. It is clear 
that with SoHo and I-Model, it becomes possible to build 
tools to conduct additional research such as user usage 
patterns, design for smart connectors, and creation of 
incentives for consumer participation. The insight gained 
from these tools has the potential to impact the design of 
future solar power architectures and smart grid networks. 
While in this paper, the focus is placed on residential 
applications, the methods and tools developed as part of this 
effort can be applied to neighborhood and community level 
monitoring and optimization, as well as a diverse range of 
systems such as automated greenhouse production, 
monitoring or automated shop floor, and large-scale supply 
chain management. 
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Distributed PV, batteries, and wind mills require flexibility 
in the modeling of the grid. From the utility side such as 
power plants, it is important to detect rapid changes within a 
few minutes. Thus, when supply drops due to an interruption, 
it is possible to restore using backup power to satisfy the tight 
requirements such as 60 Hz and 110VAC. Because 
uncertainty detection is only done from the utility side, most 
end users never observe the detection in action.  Thus, most 
people always have the wrong impression that the grid is 
always stable and predictable. In order to have the ability to 
react to the changes in the supply, it is urgent to make fast 
progress in advances in the modeling and characterization of 
both the supply and demand side.   

For example, Arizona being a desert, the sun is abundant 
natural resource whose energy can be captured via PV cells 
and converted into electrical energy. The surplus energy 
available from these PV cells can be stored in batteries or 
other storage devices. This stored energy can later be used as 
a source of electricity or sold back to the grid. Our objective 
is to manage the available resources efficiently and 
effectively so as to save both energy and cost. In order to 
achieve this, we use the demand-response (DR) model 
[11]-[16]. Based on a customer’s demand, the available 
sources of energy are scheduled to obtain an optimized 
solution. Our DR model is not restricted to a single household 
but is a virtual model connecting customers over different 
geographical regions. The customer requests a certain 
number of tasks to be completed during the day. The 
customer can choose to perform these tasks based on a 
preference basis or a cost-effective basis or an 
energy-effective basis. Our scheduling algorithm considers 
both the criteria chosen by the customer as well as the energy 
resources available at any given time. Depending on the data 
available, the customer’s requests are scheduled.  

The amount of electricity consumed by a customer can be 
monitored using smart meters. The smart meters provide an 
estimate of the energy-usage pattern of a customer. Using 
data accumulated over a given period of time, we can obtain a 
daily-load curve for the customer. The daily-load curve 
represents the amount of energy consumed by the customer 
over a 24-hour period. This is not a constant curve and is 
subject to variation based on the customer’s demands. 
However, it gives us a rough estimate of the user 
energy-usage pattern. 

Similar information is collected for all customers. This 
information can be used to combine the customers in groups. 
Customers with similar demand and daily-load curves can be 
grouped into a single group subject to the condition that all 
customers in the group agree to co-ordinate with each other 
such that energy is conserved (least amount of grid-energy 
consumed) in a cost-effective way. The customers belonging 
to the same group are linked via the DR model and their loads 
can be scheduled based on the total available resources 
shared among them. It is also important to keep in mind that 
each customer should benefit from the collaboration rather 
than being at a financial loss.  

As mentioned earlier, the groups are divided based on 
similar demands. If a particular customer’s demands vary for 
a long period of time, they would not be able to be a part of 
the existing group any longer and are subject to change to a 
new group based on their new demand. For smaller variations 

over a short period of time, mutual understanding between 
the customers within the group should suffice. 

 

IV. EXPERIMENTAL RESULTS 

A. Case Study for Demand-Response Model 
Our smart grid system model consists of PV cells, stored 

energy, and the grid. Based on the availability of these 
resources, we respond to the customer’s demand at any given 
time and schedule the load distribution. Let us now consider 
one customer each from the two neighboring cities in Arizona 
– Tucson and Phoenix. 

Let T1 be a random customer in Tucson and P2 be a 
random customer in Phoenix who shares similar load 
demands. Due to their similar load demands, we put both 
these customers in a common virtual group with the objective 
of being subject to a total power cost of 0. Both have to enter 
an agreement such that if one gains the other has to lose; but 
the amount one loses is less than the average amount he 
would lose without the grouping. 

There are five activities that affect both customers: 
1) T1 buys power from the Tucson Electric power (TEP - 

grid) at $1/kWh. 
2) P2 buys power from the Phoenix Electric Power (PEP - 

grid) at $2/kWh. 
3) T1 sells power to TEP at 50c/kWh. 
4) P2 sells power to PEP at $1/kWh. 
5) Self sufficient – no cost power. 

Therefore, the tota; cost for T1 and P2 is: 

1 2i jtotal T Pi j
Cost C S C S= × + ×∑ ∑                 (1) 

where, CT1i and CP2j are the costs for Tucson and Phoenix 
customers respectively, and Si and Sj are the time periods. 

Buying cost for T1 can be calculated as: 

1 1 11.0 sCost P S= + × ×                                      (2) 

Buying cost for P2 can be calculated as: 

2 2 22.0 sCost P S= + × ×                                    (3) 

Selling back cost for T1 can be calculated as: 

3 3 30.5 sCost P S= − × ×                                   (4) 

Selling back cost for P2 can be calculated as: 

4 4 41.0 sCost P S= − × ×                                  (5) 

A customer is self-sufficient if: 

5 0Cost =                                              (6) 

According to the agreement between the customers: 

1 2 3 4 5 0Cost Cost Cost Cost Cost+ + + + =           (7) 

Hence, when T1 is consuming power, P2 should sell back 
equal amount of power to PEP and vice versa. So, Ps1 = Ps4 
and Ps3 = Ps2; S1 = S4 and S3 = 4S2 

B. I-Connector Results 
In order to provide efficient and optimal load scheduling, 
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the following parameters should be known: 1) the amount of 
solar energy available at any given time, 2) the amount of 
energy stored in the battery at any given time, 3) the cost per 
unit energy from the PV cells, battery, and the grid and 4) the 
power transmitting capability of the energy management 
system (DC-DC converter and DC-AC inverter). Selecting 
the proper battery is also an important parameter. The battery 
must be able to store a sufficient amount of energy, and it 
must have fast enough charging and discharging rates and 
deep cycle. The optimal energy management system should 
be designed to achieve minimum transfer and converting 
power loss. As mentioned earlier, the focus of our algorithm 
is scheduling optimally the daily load curve. Sensors are 
attached to each of the user-end appliances to control their 
ON/OFF operation. Most of the events are scheduled when 
maximum energy can be obtained from the PV cells. Based 
on the cost per unit of energy, the power may be supplied 
solely by the PV cells or in addition with the battery and the 
grid. During the night, we try to use as less amount of power 
as possible. At night the energy is distributed by the battery 
and the grid. The ratio depends on the cost. The load 
scheduling is done on an hourly basis and fed as input to the 
control of the energy management system which is 
comprised of a DC-DC converter and a DC-AC inverter. 
Based on the PV power and the load power, our DC-DC 
converter works either as a buck converter or a boost 
converter. The duty cycle of the converter is adjusted based 
on the load curve. Excess energy is stored in the battery 
during the buck mode of operation. During the boost mode of 
operation, energy is discharged from the battery if load power 
is greater than the PV power. If both the PV power and the 
battery power cannot meet the load requirements then the 
grid needs to be activated.  All experimental simulations were 
carried out in HSPICE. The experiment was conducted for a 
single PV cell. The output of the PV cell is fed as input to the 
DC-DC converter. It can be observed that normally it takes 
more time to transmit energy when there are multiple output 
sources (battery charging and load) or multiple input sources 
(PV cells and battery discharging).  

I-Models have been simulated in the programming 
language SystemC as previously mentioned. The input data is 
collected from eight Sanyo HIT Double panels, which 
generates close to 170W per panel [17]. The I-Model of 
DC-DC converter has a boundary condition range of between 
50V and 350V due to the voltage limit of the MOSFET 
switches [18]. The efficiency for DC-DC and DC-AC is also 
included in I-Model due to the converting and switching loss 
during the process. Based on the specifications of given 
components, the boundary condition values are set, which 
can be modified any of the components is replaced or 
changed. 

Table I to Table V represent the experimental result data of 
our proposed new smart grid system scheme. 

TABLE I: COMPONENT LIST [2] 
Component Model 
PV Module Sanyo HIT Double 190W 

Battery Valve-regulated lead acid 
POWER MOSFET IBM 180nm MOSFET 

Microcontroller 
Silicon labs C8051F560 
PIC controller (F560DC) 

TI-TMS320C2000 

TABLE II: DELAYS FOR DIFFERENT CASES [2] 
Case Delay 

Light mode (Buck) ~20us 
Light mode (Buck + battery charging) ~30us 

Heavy mode (Boost) ~100us 
Heavy mode (Boost + battery discharging) ~210us 

 
TABLE III: PV CELL I-MODEL 

 λi (W/m2) Vo (V) Io (A) ESF (W) 
1 1200 50 2 800 
2 1000 45 2.44 878.4 
3 1300 51 3 1224 
4 1500 55.3 3.44 1521.8 

 
TABLE IV: DC-DC INVERTOR I-MODEL 

Vi (V) Inorm (A) Vo (V) ESF (W)
1 195 3 175 3905.5 
2 199.2 3.1 179 3994.8 
3 207 3.3 171 3816.2 
4 221.2 3.4 165 3682.3 

 
TABLE V:  BATTERY I-MODEL 

Vb (V) Ib (A) Tchg (hr) Tdchg(hr) ERF (W) ESF(W)
1 48 40 8.8 0 1267.2 0 
2 50 42 14.3 0 2216.5 0 
3 51 43 0 5 0 10965 
4 52 45 0 4 0 9360 

 

V. CONCLUSION 
This paper discusses a new real time, monitoring, sensing, 

and control framework that facilitates data flow and energy 
flow management by integrating power electronics hardware 
and software in both the smart grid system and smart 
buildings. Instead of following an outdated one-way 
grid-to-buildings energy distribution paradigm, we propose a 
two-side regulation scheme. Not only we regulate the grid, 
but we also reconfigure the households. Our preliminary 
experimental results showed that the intelligent connector 
(I-Connector), the Interface Model (I-Model), and the 
simulation based Optimization with Hierarchical Options 
(SoHo) proposed capture the major characteristics of smart 
home systems, and integrated with higher level optimization 
tools have the potential to provide significant energy saving. 
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