
  

  
Abstract—This paper explores the possibility of developing a 

prediction model using artificial neural networks (ANNs), 
which could be used to estimate monthly average daily global 
solar radiation in Qena, upper Egypt. Results from the paper 
have shown good agreement between the estimated and 
measured values of global solar irradiation. A correlation 
coefficient of 0.998 was obtained with mean bias error (MBE) of 
48 Wh/m2 and root mean square error (RMBE) of 115 Wh/m2. 
The comparison between the ANN and empirical model 
emphasized the superiority of the proposed ANN prediction 
model. The application of the proposed ANN model can be 
extended to other locations with similar climate and terrain. 
 

Index Terms—Artificial neural network, global solar 
radiation, sunshine duration.  
 

I. INTRODUCTION 
Solar energy is the most ancient source of energy; it is the 

basic element for almost all fossil and renewable types. Solar 
energy is freely available and could be easily harnessed to 
reduce our reliance on hydrocarbon-based energy by both, 
passive and active designs. Precise solar radiation estimation 
tools are critical in the design of solar systems [1]. Solar 
radiation data is always a necessary basis for the design of 
any solar energy conversion device and for a feasibility study 
of the possible use of solar energy [2]. There is no doubt that 
the measured data are the best but cannot always be available, 
in addition to the cost of equipment, maintenance and 
calibration. Theoretical and empirical models have been 
postulated to compute the components of the solar radiation 
[3]–[14]. Some of these models are theoretical, dealing with 
the solution of the radiative transfer equation, while others 
are simply regression models. Angstrom (1924) presented the 
first attempt at estimating global solar radiation was the 
well-known empirical relation between global solar radiation 
under clear sky conditions and bright sunshine duration [3].  

An artificial neural network (ANN) provides a 
computationally efficient way of determining an empirical, 
possibly nonlinear relationship between a number of inputs 
and one or more outputs. ANN has been applied for modeling, 
identification, optimization, prediction, forecasting and 
control of complex systems. ANN models are type of solar 
prediction models and there have been several articles that 
have used artificial neural networks for predicting solar 
radiation [15]-[17]. 

This paper uses Artificial Neural Network (ANN) method 
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to estimate Global solar radiation in Qena based on the 
number of sunshine hours, day number and location 
coordinates. Qena (26.170 N, 32.70 E) is located in the Upper 
Egypt about 600 Km south of Cairo and its climate is very hot 
dry in summer and cold in winter. It rarely rains. Also, it 
receives a large quantity of solar radiation, especially in 
summer [11]. 

 

II. METHODOLOGY  
Daily data of global solar radiation (Wh/m2) and sunshine 

hours were obtained from South valley university station at 
Qena, which is one of the stations guides of the Egyptian 
Meteorological authority. 

For predicted global solar radiation the following relation 
is the generally accepted modified form of the 
Angstrom-type regression equation, relating the clear sky 
global solar radiation to sunshine duration [18]. 
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where G is the average daily global radiation, Go is average 
daily extraterrestrial radiation, n is the day length, N is the 
maximum possible sunshine duration, and a and b are 
empirical coefficients. The daily extraterrestrial radiation Go 
was calculated from the following equation. 

⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ +=

δϕπωωδϕ

π

sinsin
180

sincoscos

365
360cos033.01*24

s

sc
o

DIG
 (2) 

where Isc = 1367 Wm-2 is the solar constant [19], D is the 
Julian day number, ϕ is the latitude, δ is the declination angle, 
ωs is the sunset hour. δ and ω are given from these formulae 
[18]. 
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The maximum possible sunshine duration N was 
calculated using the following equation [18]. 
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Artificial neural networks have been used widely in many 
application areas. Most applications use a feed-forward 
neural network with the back-propagation training algorithm. 
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There are numerous variants of the classical 
back-propagation algorithm and other training algorithms 
[20]. All these training algorithms assume a fixed ANN 
architecture and during training, they change the weights to 
obtain a satisfactory mapping of the data. The main 
advantage of the feed-forward neural networks is that they do 
not require a user-specified problem solving algorithm (as is 
the case with classic programming) but instead they ‘‘learn’’ 
from examples, much like human beings. Another advantage 
is that they possess inherent generalization ability. This 
means that they can identify and respond to patterns which 
are similar but not identical to the ones with which they have 
been trained. On the other hand, the development of a 
feed-forward ANN-model also poses certain problems, the 
most important being that there is no prior guarantee that the 
model will perform well for the problem at hand [21]. 

A feed-forward back-propagation neural network was 
used in this study. A typical neural network consists of an 
input, a hidden, and output layer. Other components include a 
neuron, weight, and a transfer function as shown in Fig. 1. 

  

 
Fig. 1. Typical neuron in a feed forward network. 

 
Estimated values were compared with measured values 

through correlation and error analysis. The latter was carried 
out through computation of mean bias error (MBE) and root 
mean square error (RMSE), represented by the following 
equations: 
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where iy  is an estimated value, ix  is a measured value, and 
N is equal to the number of observations. 
 

III. RESULTS AND DISCUSSION 
In this study, ANN and empirical model were applied 

using the data measured at Qena during 2007.  
Fig. 2 shows the monthly mean daily global solar radiation 

estimated by the above two model in addition to measured 
data. Clearly, the applied ANN model give estimated values 
of global solar radiation nearly coinciding with the measured 
values which better than that estimated by empirical model.  

 
Fig. 2. Monthly mean daily variation of global solar radiation. 

 
The estimates obtained from the empirical model were 

correlated with the measured values, giving a correlation 
coefficient r of 0.960, as shown in Fig. 3. The corresponding 
MBE was -335 Wh/m2 and the RMSE was 540 Wh/m2.  

 

 
Fig. 3. Comparison between measured and calculated global solar radiation 

values using empirical model. 
 

The estimates obtained from the ANN model were 
correlated with the measured values, giving a correlation 
coefficient r of 0.977, as shown in Fig. 4. The corresponding 
MBE was 48 Wh/m2 and the RMSE was 115 Wh/m2.  

 

 
Fig. 4. Comparison between measured and calculated global solar radiation 

values using ANN model. 
 
These results indicate a good fitting between the estimated 

and measured monthly average daily global solar irradiation 
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values. But the results calculated by ANN model are better 
than that calculated by empirical model. Table I summarizes 
the correlations and error analyses which result from the 
comparison between estimated values (ANN model and 
empirical) and measured values. 
 

TABLE I. RESULTS OF CORRELATION AND ERROR ANALY 
Model r MBE Wh/m2 RMBE Wh/m2 

Empirical model 0.960 -335 540 

ANN model 0.977 48 115 

 

IV. CONCLUSIONS 
The use of ANN technique in modeling monthly mean 

daily solar radiation has been reported. The results of 
validation and comparative study indicate that the ANN 
based estimation technique for solar radiation is more 
suitable to predict the global solar radiation than the 
empirical regression models. This study confirms the ability 
of the ANN to predict solar radiation values precisely. 
Therefore, this ANN model may be suitable for predicting 
solar radiation at any location provided that samples of the 
sunshine duration data from the locations are available.  
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